W23 CS485/585

Intro to Cryptography

Concise Oxford English Dictionary

Cryptography is the art of

 writing or solving codes (ciphers)... for military activity and gossip
○ 2 typical scenarios of "secret writing"

Private-key (symmetric) encryption

- Call a cipher an encryption scheme
- Syntax of a private-key encryption scheme

- k : private key (secret key), shared between sender/receiver
- m: plaintext (message)
- $c:$ ciphertext
- E : encryption (encode) algorithm, $(k, m) \mapsto c$
- D : decryption (decode/decipher) algorithm, $(c, k) \mapsto m$

Ceasar's cipher

- Example

$$
\begin{aligned}
m & =\text { cryptoisfun } \\
c & =\text { fubswlvixq }
\end{aligned}
$$

○ Rule

$$
\begin{array}{cl}
\operatorname{abcd} \ldots \mathrm{xyz} \\
---\infty, \ldots, z\}=\{0, \ldots, 25\} \\
\text { defg ...abc } & \{k=3 \text { fixed } \\
& \cdot E\left(m_{i}\right)=\left(m_{i}+3\right) \bmod 26
\end{array}
$$

夫 Easy to break if we know it's encoded by Ceasar's cipher.

Kirchhoff's principle

The cipher method must NOT be required to be secret, and it must be able to fall into the hands of the enemy without inconvenience.

- Security should rely solely on the secrecy of the key

1. Much easier to secure \& update a short key than complex enc/dec algorithms.
2. Public scrutiny makes a cipher more trustworthy.
3. Easier to maintain at large-scale.
^ Only use standardized cryptosystems whenever possible!

Ceasar ++: shift \& substitution cipher

- Shift cipher

$$
\{a, \ldots, z\}=\{0, \ldots, 25\}
$$

$$
\{a, \ldots, z\}=\{0, \ldots, 25\}
$$

- Pick $k \in\{0, \ldots, 25\}$ and keep it secret
- $E\left(m_{i}\right)=\left(m_{i}+k\right) \bmod 26$
- $k=3$ fixed
- $E\left(m_{i}\right)=\left(m_{i}+3\right) \bmod 26$
- Only 26 possibiities, brute-force search a key! Ex. Decipher "dszqupjtgvo".
- Substitution cipher
- k defines a permutation on the alphabet.
abcdefghijklmnopqrstuvwxyz
xeuadnbkvmrocqfsyhwglzijpt
- Subsumes Shift Cipher as a special case.
- How many possible keys? $\quad 26!\approx 2^{88}$

Breaking sub cipher by frequency analysis

- Sub cipher preserves frequency: one-to-one correspondence.
- Frequency distribution in English language is publicly known.
- Typical sentences close to average frequency distribution.

Poly-allphalbetic shift cipher

○ A.k.a. Vigenère cipher

- Key k : a string of letters
- Encrypt E :

Key	psu
Plaintext	pto isf una nde ool
Ciphertext	js eli xkz jfu

- Considered "unbreakable" for > 300 years.
© Breaking Vigenère
- Key length known: frequency analysis on each substring (under the same shift).
- How to determine the key length? Read KL.

Poly-alphabetic substitution cipher

© Example: Enigma machine in WWII

Alan Turing

Source: imdb

- Attack: same principle as before.

Good reads on crypto history

Source: amazon.com

Lessons from historical ciphers

- Designing good ciphers is hard
© Looks unbreakable \neq is unbreakable
© Intelligent but mostly an art
Not clear about
- Is a cipher secure?
- ... under what circumstances?
- ... and wait, what does "secure" mean precisely?

1. Much more rigorous: security via mathematics
2. Much more than "secret writing": public-key crypto, ...

> Modern Cryptography involves the study of mathematical techniques for securing \{digital information, systems and computations\} against adversarial attacks - KL

Revolution of Modern Cryptography

What this course is about

A conceptual and theoretical tour to modern cryptography

Yes - Ideas

- Formal approach to security: define, construct, prove.
- Implementations
- Engineering skills
- Goal: a cryptographer's mind
- A solid foundation for real-world security.
- Appreciate the intellectual beauty.
- Beneficial far beyond: differential privacy, ML, algorithms, ...

Logistics

- Meetings: M/W 2-3:50 pm @ CH 382 (Zoom participation available)

○ Instructor: Prof. Fang Song (fang.song@pdx.edu).

- Texts
- Required: KL
- Supplement: BS + More on Resource page

KL

A Graduate Course in Applied Cryptography

Dan Boneh and Victor Shoup

BS

Prerequisite

Comfortable with READING \& WRITING mathematical Proofs

- CS 350 or equivalent
- Some math helpful
- Combinatorics, probability, linear algebra, number theory ...
- "Big-Oh notation, random variable, independence, matrices, eigenvalue, congruence..."
© Programming not required

Main topics

1. Overview. (1 week)

- History, principles of modern crypto, perfect secrecy

2. Private-key (symmetric) crypto (4 weeks)

- Encryption, message authentication, hash functions

3. Public-key (asymmetric) crypto (3 weeks)

- Encryption, digital signature

4. Selected topics (2 weeks)

- Ethics, Bitcoin, quantum-safe crypto, ...

Policy: grading

○ Homework (biweekly): 50\%.

- Project: 30\%.
© Quiz (biweekly): 15%.
- Participation: 5%.

Policy:homework

- Late submission
- 5 late days in total at your dispense.
- Collaboration is encouraged.
- Form study groups of ≤ 3 people, brainstorm etc.
- Write up your solutions independently.
- Mark the names of collaborators on each problem.
- External resources NOT permitted.
- Your solutions must be intelligible:
- Be ready to explain your soln's, and convince others \& yourself.

Policy cont'd

- Academic Integrity
- PSU Student Code of Conduct
\bigcirc Academic accommodation
- Contact DRC (503-725-4150, drc@pdx.edu) and notify me.
- Covid
- Lecture recordings
- Comply with FERPA and PSU's Student Code of Conduct.
- Sharing outside this class not permitted.

How to succeed?

© Study the reading materials in advance.
© Ask a lot of questions.

○ Form study groups.

- Start on assignments EARLY!
- Make baby steps every day >> leave everything till last minute.
- Review lecture notes \& reading materials multiple iterations!

To-do

1. Course webpage https://fangsong.info/teaching/w23 4585 icrypto/

- "Schedule" page: reading materials.
- "Resource" page: additional materials.
- Check regularly!

2. Google Classroom: lecture notes, homework, quizzes

- Join with code: biqddg3 (https://classroom.google.com/c/NTgwMTAwMDU4MjEw?cjc=biqddg3)
- A calendar "W23-CS-4585-iCrypto" will appear in your PSU Google Calendar.

To-do, cont'd

3. Slack(w23-4585-icrypto): announcements, discussions, Q\&A

- Invitations sent. Important information in Pinned msg.
- Post questions publicly, except for private concerns (DM me).
- (Less efficient): email and start your subject line with "w23-4585-icrypto"

4. Getting to know each other:

- Mingle in Slack. Post a short self intro. Form study groups.

5. HW 1 will be out soon

- Short practice on some math/algorithms.
- Due in one week (others will be biweekly).

Today

1. History \& course info.
2. Principles of modern Cryptography
3. Much more rigorous: security via mathematics
4. Much more than "secret writing": public-key crypto, ...

> Modern Cryptography involves the study of mathematical techniques for securing \{digital information, systems and computations\} against adversarial attacks - KL

Revolution of Modern Cryptography

Principles of modern crypto

1. Formal definitions of security

- What "security" do you want to achieve exactly?
- Guide the design and assess of a construction.
- Know better what you need.

Principles of modern crypto, cont'd

2. Rigorous proofs of security

- The only known method to reason against (infinitely) many possible attacking strategies.
- Never rely on your pure impression.

Principles of modern crypto, cont'd

3. Precise assumptions

- Unconditional security is often impossible to attain.
- Be precise, for validating and comparing schemes.

Assume "factoring 1000-bit integer cannot be done in less than 1000 steps".

- Well-studied >> ad hoc: test-of-time.
- Neat >> vague: easy to assess/falsify.
\star Modularity: replace a building block when needed.

Recap: principles of modern crypto

1. Formal definitions of security
2. Rigorous proofs of security
3. Precise assumptions

In contrast, historical crypto is not careful about

- is a cipher secure?
- ... under what circumstances?
- ... and wait, what does "secure" mean precisely?

Provable security \& real-world

A scheme has been proven secure

security in the real world
© Are the definitions / assumptions right?

- Not match what is needed.
- Not capture attackers' true abilities.
*You (the designer/defender) have more in charge, instead of attackers.
- Seek improvements proactively: refine defs, test assumptions, ...

Supplement

1. History \& course info.
2. Principles of modern Cryptography
3. Review: mathematical background (on separate note)

- Sets
- Asymptotic notations
- Probability 101

Asymptotic notations

$\bigcirc O(\cdot), \Omega(\cdot), \Theta(\cdot), o(\cdot), \omega(\cdot)$

- Measure algorithm behaviors (by functions on integers) as problem size grows.
- Defining $O(\cdot)$: asymptotic upper bound

We write $f(n)=O(g(n))$ if there exist constants $c>0, n_{0}>0$, such that $0 \leq f(n) \leq c g(n)$ for all $n \geq n_{0}$.

- $O(g(n))$ as a set

$$
O(g(n)):=\left\{f(n): \exists c>0, n_{0}>0, \text { such that } 0 \geq f(n) \leq c \cdot g(n) \text { for all } n \geq n_{0}\right\}
$$

Examples

$f(n)=O(g(n))$ if there exist constants $c>0, n_{0}>0$, such that $0 \leq f(n) \leq c g(n)$ for all $n \geq n_{0}$.

- $2 n^{2}=O\left(n^{3}\right)$
- $c=1, n_{0}=2$.
- I.e., $2 n^{2} \in O\left(n^{3}\right)$
- $f(n)=n^{3}+O\left(n^{2}\right)$
- Meaning $f(n)=n^{3}+h(n)$ for some $h(n) \in O\left(n^{2}\right)$

Exercise: sort by asymptotic order of growth

1. $n \log n$
2. n
3. \sqrt{n}
4. n !
5. $\log n$
6. $n^{1,000,000}$
7. n^{2}
8. $n^{1 / \log n}$
9. 2^{n}
10. $\log (n!)$

List them in ascending order: if f appears before g, then $f=O(g)$

$$
9,3,2,6,1=10,4,8,5,7
$$

Summary

Notation	\ldots means \ldots	Think...	E.g.	Lim $f(n) / g(n)$
$f(n)=O(n)$	$\exists c>0, n_{0}>0, \forall n>n_{0}:$ $0 \leq f(n)<c g(n)$	Upper bound	$100 n^{2}$ $=O\left(n^{3}\right)$	If it exists, it is $<\infty$
$f(n)=\Omega(g(n))$	$\exists c>0, n_{0}>0, \forall n>n_{0}:$ $0 \leq c g(n)<f(n)$	Lower bound	n^{100} $=\Omega\left(2^{n}\right)$	If it exists, it is >0
$f(n)=\Theta(g(n))$	both of the above: $f=\Omega$ (g) and $f=O(g)$	Tight bound	$\log (n!)$ $=\Theta(n \log n)$	If it exists, it is >0 and $<$ ∞
$f(n)=o(g(n))$	$\forall c>0, n_{0}>0, \forall n>n_{0}:$ $0 \leq f(n)<c g(n)$	Strict upper bound	$n^{2}=\mathrm{o}\left(2^{n}\right)$	Limit exists, $=0$
$f(n)=\omega(g(n))$	$\forall c>0, n_{0}>0, \forall n>n_{0}:$ $0 \leq c g(n)<f(n)$	Strict lower bound	n^{2} $=\omega(\log n)$	Limit exists, $=\infty$

Review: Chapter 3 Introduction to Algorithms, By Cormen, Leiserson, Rivest and Stein.

