@ Portland State University

W21 CS 584/684
Algorithm Design & ' e Dynamic programming
Analysis * Weighted interval scheduling

L.ecture /

Fang Song |

Credit: based on slides by K. Wayne

Historic note on dynamic programming

THE THEORY OF DYNAMIC PROGRAMMING

RICHARD BELLMAN

an l 1. Introduction. Before turning to a discussion of some representa-
tive problems which will permit us to exhibit various mathematical
- features of the theory, let us present a brief survey of the funda-
mental concepts, hopes, and aspirations of dynamic programming.
To begin with, the theory was created to treat the mathematical
problems arising from the study of various multi-stage decision
processes, which may roughly be described in the following way: We
have a physical system whose state at any time £ is determined by a
set of quantities which we call state parameters, or state variables.

® Etymology

* Dynamic programming = planning over time

® Richard Bellman

DP [1953] @RAND

B-Ford algorithm for general
shortest path (stay tuned!)

Curse of dimensionality

» Secretary of Defense was hostile to mathematical research
* Bellman sought an impressive name to avoid confrontation

"it's impossible to use dynamic in a pejorative sense”

"something not even a Congressman could object to”
Reference: Bellman, R. E. Eye of the Hurricane, An Autobiography.

2

Dynamic programming applications

Indispensable technique for optimization problems, * Many soln's, each has a value.
* Find a solution with optimal

® Areas (min or max) value

» Computer science: theory, graphics, Al, compiler, systems, ...
* Bioinformatics

* Operations, information theory, control theory.

® Famous DP algorithms
* Avidan-Shamir for seam carving.

» Unix diff for comparing two files.

* Viterbi for hidden Markov models.

* Knuth-Plass for word wrapping text in TeX.
* Cocke-Kasami-Younger for parsing context-free grammars.

3

Dynamic programming

® Break up a problem into a series of overlapping subproblems.

® There is an ordering on the subproblems, and a relation showing how to solve
a subproblem given answers to “smaller” subproblems (i.e., those appear
earlier in the ordering).

An implicit DAG: nodes = subproblems, edges = dependencies

Our examples on shortest path in DAGs and longest increasing subsequence
(i.e., longest path in DAGs) have packed many ideas ...

Fibonacci sequence

| L.eonardo of Pisa (Fibonacci)
1170 - 1250
® Definition.

0,1,1,2,3,.5,8,13,21.34,... an = 0, a; = 1, a, = 1
a, = d,_1 —+ a, -

Fib(n): // A simple recursive algorithm
1. Ifn =0, return O

Output: a,. | 8 Ifn=1,returnl
i 3. Return Fib(n — 1) + Fib(n — 2)

Input: 7.

® Correctness.
® Running time.

e T(n) =T — 1)+ T(n —2) + O(1) [Exercise. Show that T(n) = 29"]
® Can we do better?

What we did? A “wasteful” recursion

® | ots of redundancy! Only n — 1 distinct subproblems.

Why recursion in divide-&-conquer works great?
© independent & significantly smaller subproblems

6

A “smart” recursion by memoization

SIArLEID(R); | ® Running time. Linear O(n).
// al0,..., n| store subproblem values from recursive calls .

1. Ifn =0, return0 ® Track the recursion tree

2. Ifn =1, return 1 :

= e * Fillupal...]bottom up.

If a|n] not defined
aln] <« SmartFib(n — 1) + SmartFib(n — 2)
Return aln]

a / an \ L)

) ap_3 an—3 4

Fill it deliberately

TterFib(n): . N
// al0,..., n| store subproblem values O(n) additions.

L. al0] <0 ® Space for storing O(n) integers.
2. all] « 1

. o ’)
3. Fori=2....n Can we save space further:

aln] = aln — 1]+ a[n — 2]
4. Return a|n]

® DP is about smart recursion (i.e., without repetition) top-down.
® Usually easy to express by building up a table iteratively bottom-up.

8

Weighted interval scheduling

Input: 7 jobs; job j starts at s;, finishes at]‘}, weight w.

Output: subset of mutually compatible jobs of maximum weight.

li.e., they don’t overlap]

2™ d£$ﬂ /]§

] e]

Assuming all Wi = 1,

b (b, e, h}isan optimal soln.

Weighted interval scheduling cont’d

® Label jobs by finishing timef; < /, < ... < /,.

® Def. pre(j) =largest index i < j such that
1 is compatible with J.
1(b) i.e., latest job before j & compatible with ;.
' 2(c) Ex. pre(8) = S,pre(7) = 3,pre(2) =

3 a
() ' 4(8) ® OP1()) = value of optimal solution to

5(d) jobs {1,2,...,/}.
6(f) [OPT(n): value of optimal solution to
7(9) initial problem]

:0:1:2:341:56::7539101:1 Tirme

10

Forming the recursion for optimal solution

1. Case1. OP1(j) does NOT select job ;.

* Must include optimal solution to subproblem consisting of remaining
compatible jobs 1,2,...,7 — 1: OPT(j — 1).

2. Case 2. OPI(j) selects job .
» Collect profit w;; exclude incompatible jobs {pre(j) + L,pre(j) +2,...,j — 1}
* Include optimal solution to subproblem of remaining 1,2,..., pre(j): OPT(pre(j)).
0, if j =0
OPT(j) = { max{OPT(j — 1), w;+ OPT(pre(j))}, otherwise

casel case?

[

“Wasteful” recursion

INPUL: 71, 81, coes Syo f1s oees Sy Wis vy W,

Output: OPT(n).

ComputeOPT(j):

// sort by finishing time sothatf, < f, < ... < f,
// compute pre(1), pre(2), ..., pre(n)

1. Ifj =0, return O

<. Hlse return

max{ComputeOPT(; — 1), w; + ComputeOPT (pre()))}

® Running time?

» Exponential(n) :(

12

“Smart” recursion by memoization

® Memoization. Store results of subproblems; lookup as needed.

M-computeOPT(j):
// sort by finishing time sothatf; < f, < ... < f,
// compute pre(l), pre(2), ..., pre(n)
// M|0,..., n| store subproblem values; M[0] = 0O, others init to NULL
1. M[1]=0
2. IfM|j] = NULL
M| j] = max{M-computeOPT(; — 1), w; + M-computeOPT(pre(i)}
3. Return M|]

® Running time M-computeOPT(n)?

13

Bottom-up dynamic programming

IterM-computeOPT(n):
// sort by finishing time sothatf; < 5, < ... < f, —

// compute pre(l), pre(2), ..., pre(n) N _| O(nlogn)
// MJO,..., n] store subproblem values; init to O

1. Forj=1,.... B

Jr ; O(n)

M1 = max{M[j — 1], w; + M{pre(j)]}

2. Return M|n] \ / u

Previously computed values

® Running time IterM-computeOPT(n): O(nlogn)

® How to find an optimal solution, in addition to its value?

® What lessons we’'ve learned?

14

Essence of dynamic programming

® Break up a problem into a series of overlapping subproblems.

® There is an ordering on the subproblems, and a relation showing how to solve a
subproblem given answers to “smaller” subproblems.

Top-down < |

375 000, 20, . . .

Wl e DPis about smart recursion (i.e.

oI 5 : ot At k.

‘}ﬁ N R without repetition) by momoization. (; A

\ ‘\':.x "é} e‘::» ’/:" .«5}'
v \ 'f',?\?;/““\ \ "j},?

o 1 1 {\1«} AT 7,
% * Usually easy to express by building ﬁgzé%%%"
¢ m‘%?«?ﬁp

Credit: Mary Wootters up a table iteratively.
|

>Bottom up

15

Arecipe for DP

1. Formulate the problem recursively (key step).
a. Specification. Describe what problems to solve (not how).
b. Recursion. Give a recursive formula for the whole problem in terms of answers
to smaller instances of the same problem. £%
c. Step back and double check. si)ﬁ,i
2. Build solutions to your recurrence (kinda routine). %‘%3;%%%‘

- DI
Identify subproblems. We usually go with bottom-

Choose a memoization data structure. up approach in this class.

a.
b.
c. Identify dependencies and find a good order (DAG in topological order).
d.
e.

Write down your algorithm.
Analyze time. Find possible improvement if possible.

16

Scratch

