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Historic note on dynamic programming
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"it's impossible to use dynamic in a pejorative sense" 
"something not even a Congressman could object to”

Reference: Bellman, R. E. Eye of the Hurricane,  An Autobiography. 

๏ Richard Bellman

• DP [1953] @RAND

• B-Ford algorithm for general 

shortest path (stay tuned!)

• Curse of dimensionality

• … ๏ Etymology


• Dynamic programming = planning over time

• Secretary of Defense was hostile to mathematical research

• Bellman sought an impressive name to avoid confrontation



Dynamic programming applications
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Indispensable technique for optimization problems.

๏ Areas

• Computer science: theory, graphics, AI, compiler, systems, …

• Bioinformatics

• Operations, information theory, control theory. 

• Many soln’s, each has a value.

• Find a solution with optimal 

(min or max ) value

๏ Famous DP algorithms

• Avidan–Shamir for seam carving.
• Unix diff for comparing two files. 
• Viterbi for hidden Markov models.
• Knuth–Plass for word wrapping text in TeX.
• Cocke–Kasami–Younger for parsing context-free grammars.



Dynamic programming
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๏ Break up a problem into a series of overlapping subproblems.


๏ There is an ordering on the subproblems, and a relation showing how to solve 
a subproblem given answers to “smaller” subproblems (i.e., those appear 
earlier in the ordering).

An implicit DAG: nodes = subproblems, edges = dependencies

Our  examples on shortest path in DAGs and longest increasing subsequence 
(i.e., longest path in DAGs) have packed many ideas … 



Fibonacci sequence
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๏ Definition. 

0,1,1,2,3,5,8,13,21,34,…

Leonardo of Pisa (Fibonacci)

1170 - 1250

a0 = 0, a1 = 1, a2 = 1
an = an−1 + an−2

Input: .


Output: . 

n

an

Fib( ): // A simple recursive algorithm 

1. If , return 

2. If , return 

3. Return 

n
n = 0 0
n = 1 1

Fib(n − 1) + Fib(n − 2)

๏ Correctness.

๏ Running time. 


•  [Exercise. Show that .]

๏ Can we do better? 

T(n) = T(n − 1) + T(n − 2) + Θ(1) T(n) = 2O(n)



What we did? A “wasteful” recursion
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๏ Lots of redundancy! Only  distinct subproblems. n − 1
an

an−1
an−2

an−2 an−3 an−3 an−4

an−3 an−4 an−4 an−5 an−4 an−5 an−5 an−6
⋮

Why recursion in divide-&-conquer works great?

      ! independent & significantly smaller subproblems



A “smart” recursion by memoization
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SmartFib( ): 

//  store subproblem values from recursive calls 

1. If , return 

2. If , return 

3. Else

            If  not defined 

                

            Return 

n
a[0,…, n]

n = 0 0
n = 1 1

a[n]
a[n] ← SmartFib(n − 1) + SmartFib(n − 2)

a[n]

an

an−1
an−2

an−2 an−3 an−3 an−4

an−3 an−4 an−4 an−5 an−4 an−5 an−5 an−6

๏ Running time. Linear .

๏ Track the recursion tree


• Fill up  bottom up.

O(n)

a[…]



Fill it deliberately
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IterFib( ): 

//  store subproblem values 

1. 

2. 

3. For 

            

4. Return 

n
a[0,…, n]

a[0] ← 0
a[1] ← 1

i = 2,…, n
a[n] = a[n − 1] + a[n − 2]

a[n]

๏  additions.

๏ Space for storing  integers. 


• Can we save space further?

O(n)
O(n)

a1 an−2a2 …a0
an−1 an

๏ DP is about smart recursion (i.e., without repetition) top-down. 

๏ Usually easy to express by building up a table iteratively bottom-up. 



Weighted interval scheduling
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Input:  jobs; job  starts at , finishes at , weight . 


Output: subset of mutually compatible jobs of maximum weight. 

n j sj fj wj

[i.e., they don’t overlap]

!
"

#
$
%

&
'

ℎ
0 1 2 3 4 5 6 7 8 9 10 11 Time

sj fj

wj

Assuming all , 
 is an optimal soln. 

wj = 1
{b, e, h}



Weighted interval scheduling cont’d
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i.e., latest job before  & compatible with . 

Ex. 

j j
pre(8) = 5,pre(7) = 3,pre(2) = 0

3(#)

1(&)
2(()

5(*)
4(,)

6(.)
7(0)

8(ℎ)
0 1 2 3 4 5 6 7 8 9 10 11 Time

๏ Label jobs by finishing time . f1 ≤ f2 ≤ … ≤ fn

[ : value of optimal solution to 
initial problem]
OPT(n)

๏  = value of optimal solution to 
jobs .  
OPT( j)

{1,2,…, j}

๏ Def.  = largest index  such that 
 is compatible with . 

pre( j) i < j
i j



Forming the recursion for optimal solution
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1. Case 1.  does NOT select job . 

• Must include optimal solution to subproblem consisting of remaining 

compatible jobs : .

OPT( j) j

1,2,…, j − 1 OPT( j − 1)

2. Case 2.  selects job . 


• Collect profit ; exclude incompatible jobs 


• Include optimal solution to subproblem of remaining : .

OPT( j) j
wj {pre( j) + 1,pre( j) + 2,…, j − 1}

1,2,…, pre( j) OPT(pre( j))

OPT( j) =
0, if j = 0

max{OPT( j − 1)
case1

, wj + OPT(pre( j))
case2

}, otherwise



“Wasteful” recursion
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Input: .


Output: 

n, s1, …, sn, f1, …, fn, w1, …, wn

OPT(n) .
ComputeOPT(j): 

// sort by finishing time so that 

// compute 

1. If , return 

2. Else return 

f1 ≤ f2 ≤ … ≤ fn
pre(1), pre(2), …, pre(n)

j = 0 0

max{ComputeOPT( j − 1), wj + ComputeOPT(pre( j))}

๏ Running time?


•  :(Exponential(n)



“Smart” recursion by memoization
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๏ Memoization. Store results of subproblems; lookup as needed. 

M-computeOPT(j): 

// sort by finishing time so that 

// compute 

//  store subproblem values; , others init to NULL

1. 

2. If 

          

3. Return 

f1 ≤ f2 ≤ … ≤ fn
pre(1), pre(2), …, pre(n)

M[0,…, n] M[0] = 0
M[1] = 0

M[ j] = NULL
M[ j] = max{M-computeOPT( j − 1), wj + M-computeOPT(pre( j))}

M[ j]

๏ Running time M-computeOPT(n)?



Bottom-up dynamic programming
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IterM-computeOPT( ): 

// sort by finishing time so that 

// compute 

//  store subproblem values; init to 0

1. For 

          

2. Return 

n
f1 ≤ f2 ≤ … ≤ fn

pre(1), pre(2), …, pre(n)
M[0,…, n]

j = 1,…, n
M[ j] = max{M[ j − 1], wj + M[pre( j)]}

M[n]

๏ Running time IterM-computeOPT(n): O(n log n)

O(n log n)

O(n)

๏ How to find an optimal solution, in addition to its value?

๏ What lessons we’ve learned?

Previously computed values



Essence of dynamic programming
๏ Break up a problem into a series of overlapping subproblems.

๏ There is an ordering on the subproblems, and a relation showing how to solve a 

subproblem given answers to “smaller” subproblems.
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• DP is about smart recursion (i.e. 
without repetition) by momoization.

• Usually easy to express by building 
up a table iteratively. Credit: Mary Wootters 

Top-down

Bottom up



A recipe for DP
1. Formulate the problem recursively (key step).


a. Specification. Describe what problems to solve (not how).

b. Recursion. Give a recursive formula for the whole problem in terms of answers 

to smaller instances of the same problem.

c. Step back and double check. 


2. Build solutions to your recurrence (kinda routine). 

a. Identify subproblems.

b. Choose a memoization data structure. 

c. Identify dependencies and find a good order (DAG in topological order).

d. Write down your algorithm.

e. Analyze time. Find possible improvement if possible. 
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We usually go with bottom-
up approach in this class.



Scratch


