

W'21 CS 584/684 Algorithm Design & Analysis

Fang Song

Lecture 6

- Topological order cont'd
 Shortest/longest path in DAGs
- Dynamic programming intro

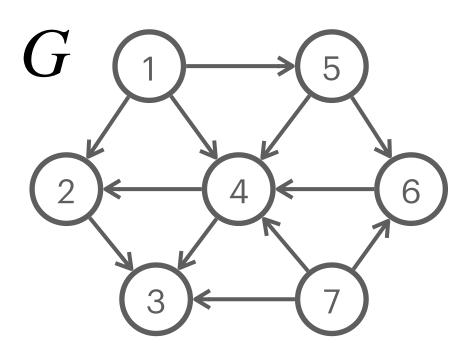
Credit: based on slides by K. Wayne

Exercise

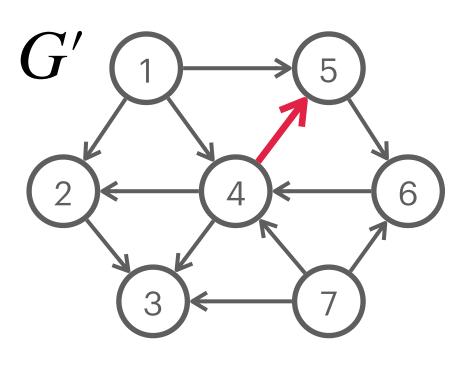
- Let G be a graph with n vertices and m edges. Which of the following statements are TRUE?
 - **BFS/DFS** always run in time O(m + n).
 - If G is undirected, the connected components of two vertices can be identical.
 - If G is directed, the strong components of two vertices can be neither identical nor disjoint.
 - There is an algorithm to test strong connectivity of directed G in time o(n(m + n)) in the worst-case.

Review: Directed acyclic graphs (DAG)

Def. A DAG is a directed graph that contains no directed cycles.

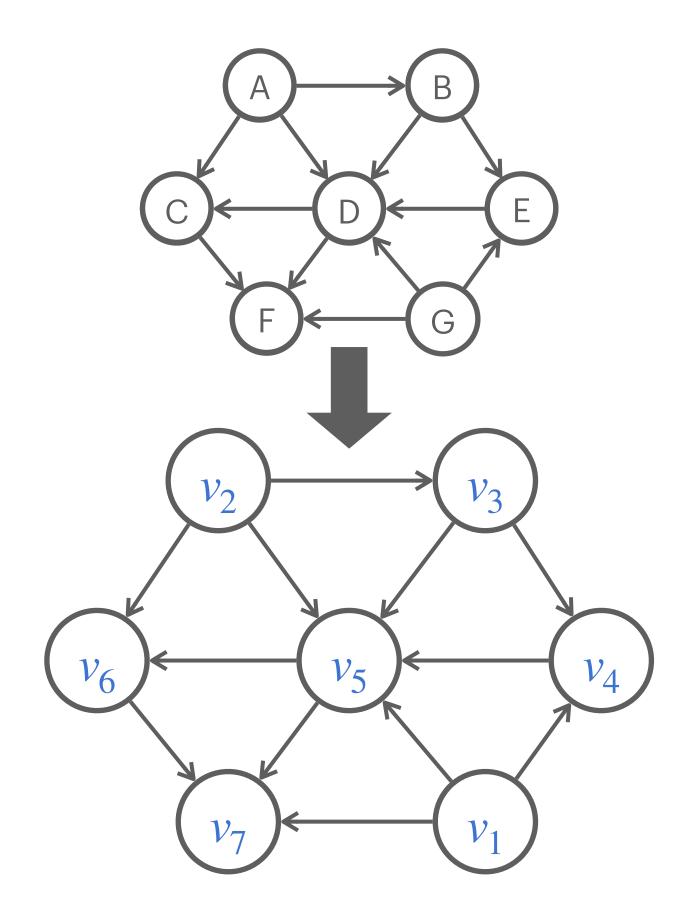


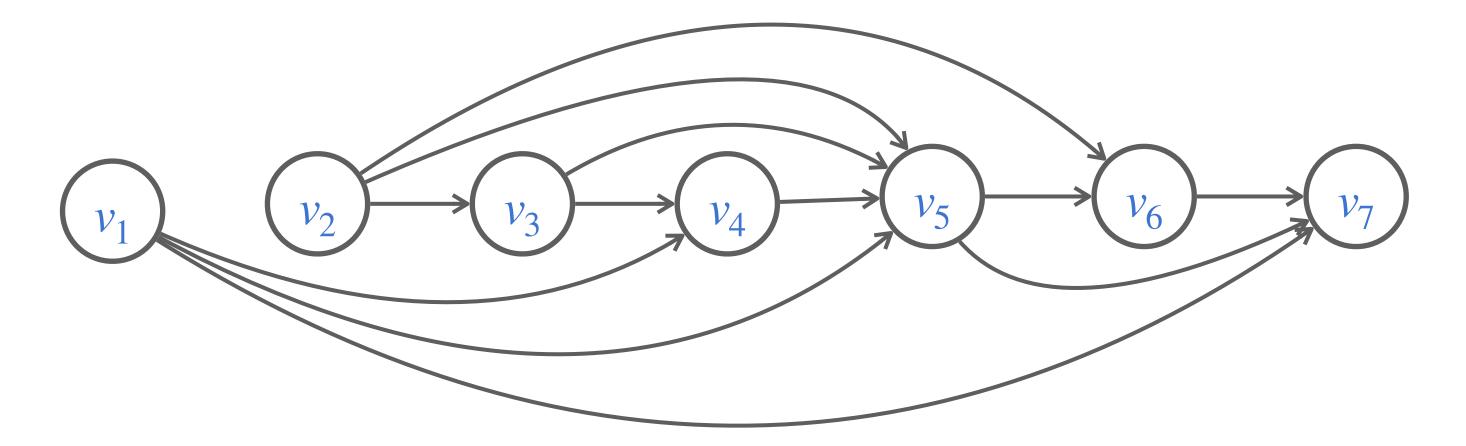
- Application: precedence constraints.
 - Course prerequisite: 350 must be taken before 584/684.
 - Compilation: module *i* must be complied before *j*.
 - Pipeline of computing jobs: output of job *i* determines input of job *j*.



Topological order

• Def. A topological order of a directed graph is an ordering of its nodes $v_1, ..., v_n$, so that for every edge $v_i \rightarrow v_j$ we have i < j.





A topological order All edges go from left to right

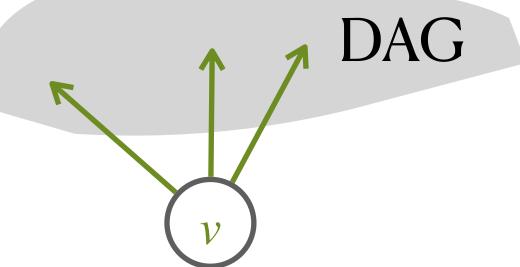
2. Does every DAG have a topological order?

Q2: Dose every DAG have a topological order?

Lemma 2. A DAG G has a node with no entering edges.

Corollary. If G is a DAG, then G has a topological order.

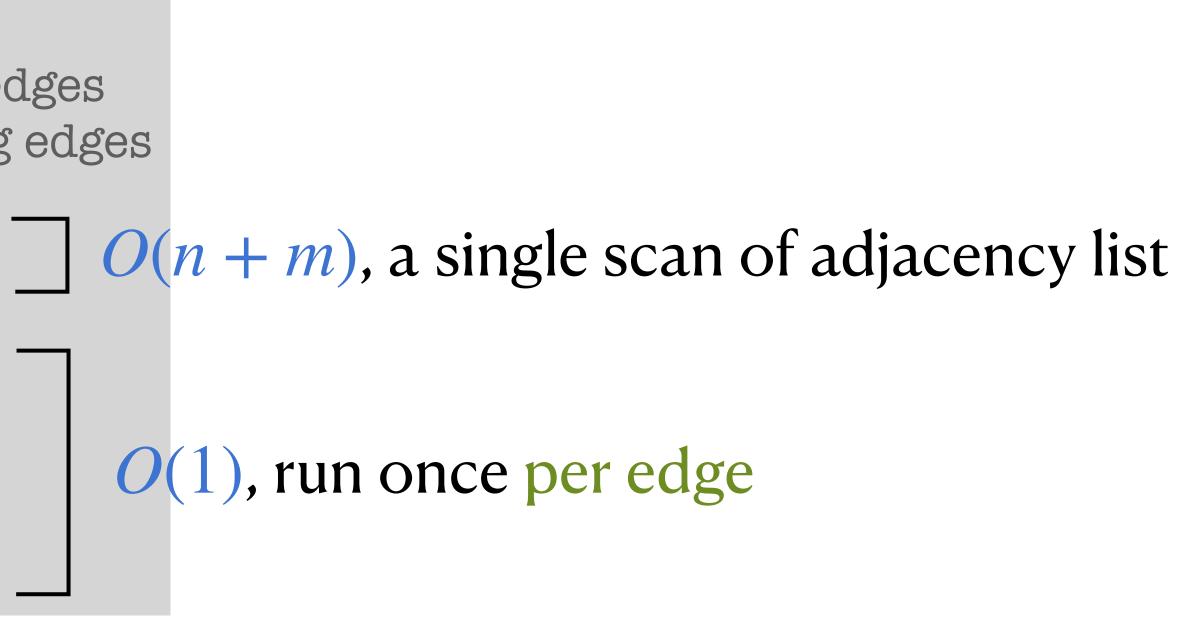
- Proof of corollary given Lemma 1 [by induction on number of nodes]
 - Base case: true if n = 1.
 - Given a DAG on n > 1 nodes, find a node v with no entering edges [Lemma 2].
 - $G \{v\}$ is a DAG, since deleting v cannot create cycles.
 - Induction hypothesis, $G \{v\}$ (with n 1 nodes) has a topological order.
 - Place v first then append nodes of $G \{v\}$ in topological order [valid because] *v* has no entering edges].



Topological sorting algorithm

TopSort(G):// count(w) = remaining number of incoming edges// S = set of remaining nodes with no incoming edges// V[1,...,n] topological order1. Initialize S and Count(\cdot) for all nodes2. For $v \in S$ Append v to VFor all w with $v \rightarrow w$ // delete v from GCount(w) - -If Count(w) = = 0 add w to S

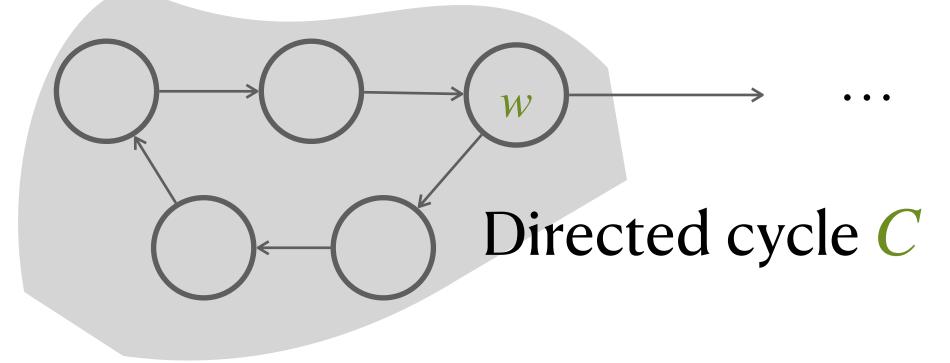
Theorem. TopSort computes a topological order in O(n + m) time.

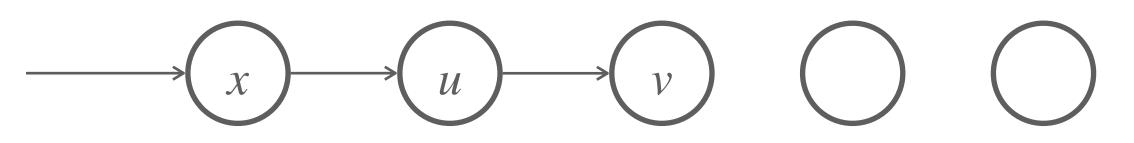


Completing the proof

Lemma 2. A DAG G has a node with no entering edges.

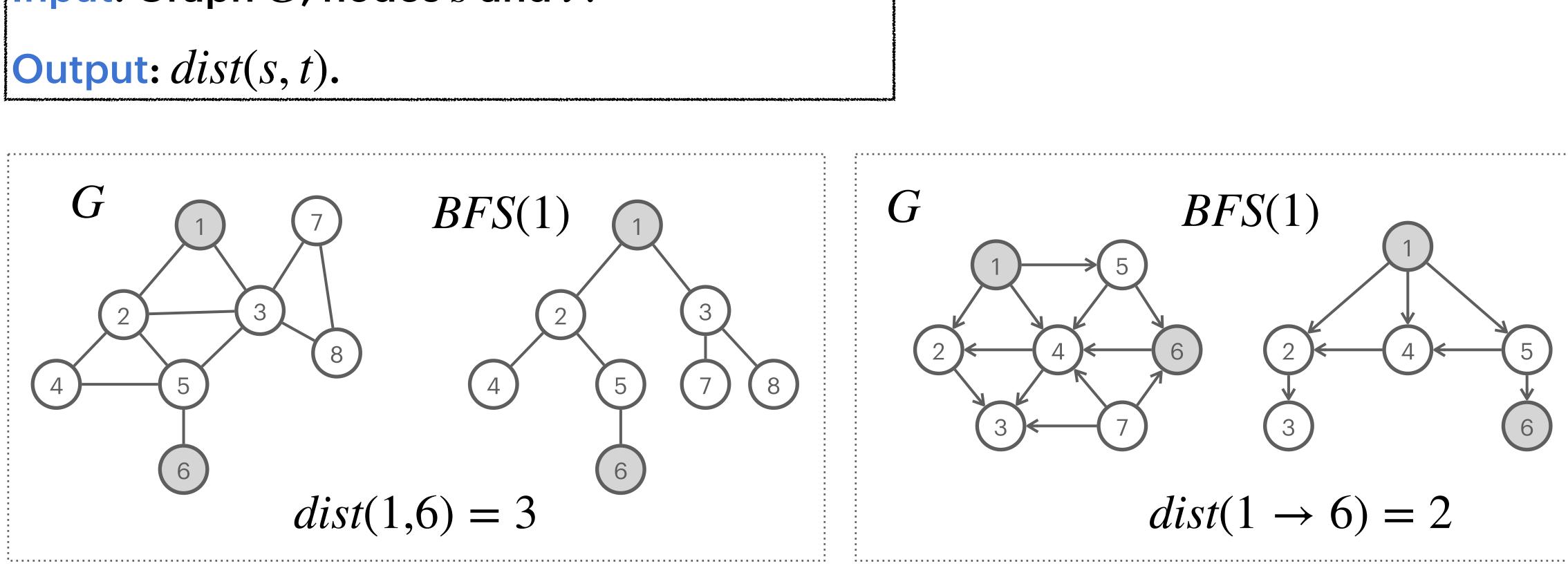
- Proof [by contradiction]
 - Suppose G is a DAG, and every node has at least one entering edge.
 - Pick any node *v*, and follow edges backwards from *v*.
 - Continue till we visit a node, say *w*, twice. $(v \leftarrow u \leftarrow x \dots \leftarrow w \dots \leftarrow w)$
 - Let C be the sequence of nodes between successive visits to w.
 - *C* is a cycle. Contradiction!





Shortest path in a graph

Input: Graph G, nodes s and t. **Output:** dist(s, t).



Shortest path in a weighted graph

- Weighted graphs
 - Every edge has a length ℓ_e .

Length of a path $\ell(P) = \sum \ell_e$.

 $e \in P$

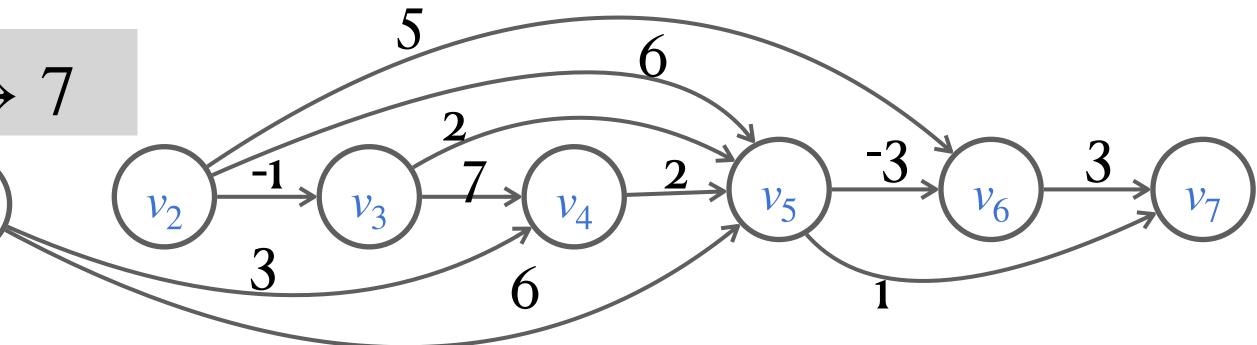
- Distance $dist(s, t) = \min_{P:u \rightsquigarrow v} \ell(P)$.
- $\forall e \in E, \ell(e) = 1$: BFS solves it.
- It is the set of th

- Length function: $\mathscr{C}: E \to \mathbb{Z}$
 - $\ell(u, v) = \infty$ if not an edge
 - Model time, distance, cost ...
 - Can be negative: fund transfer, heat in chemistry reaction ...

Shortest path in DAGs

Input: DAG G, length function ℓ , nodes s and t. **Output:** d(t) := dist(s, t).

• Example. What is $dist(1 \rightarrow 7)$? $dist(1 \rightarrow 7) = 5, 1 \rightarrow 4 \rightarrow 5 \rightarrow 6 \rightarrow 7$ $d(7) = \min\{d(6) + 3, d(5) + 1\}$ $d(6) = \min\{d(5) - 3, d(2) + 5\}$ $d(5) = \min\{d(4) + 2, d(3) + 2, d(2) + 6, d(1) + 6\}$ $d(4) = \min\{d(3) + 7, d(1) + 3\}$ d(3) = d(2) - 1



$$d(2) = \infty$$
$$d(1) = 0$$

Shortest path in DAGs: algorithm

Key observations

- Reduce to subproblems $d(6), d(5), \ldots$
- Subproblems overlap: e.g., d(6), d(5)both involve d(2).
- An ordering of subproblems (DAG: edges go left to right)

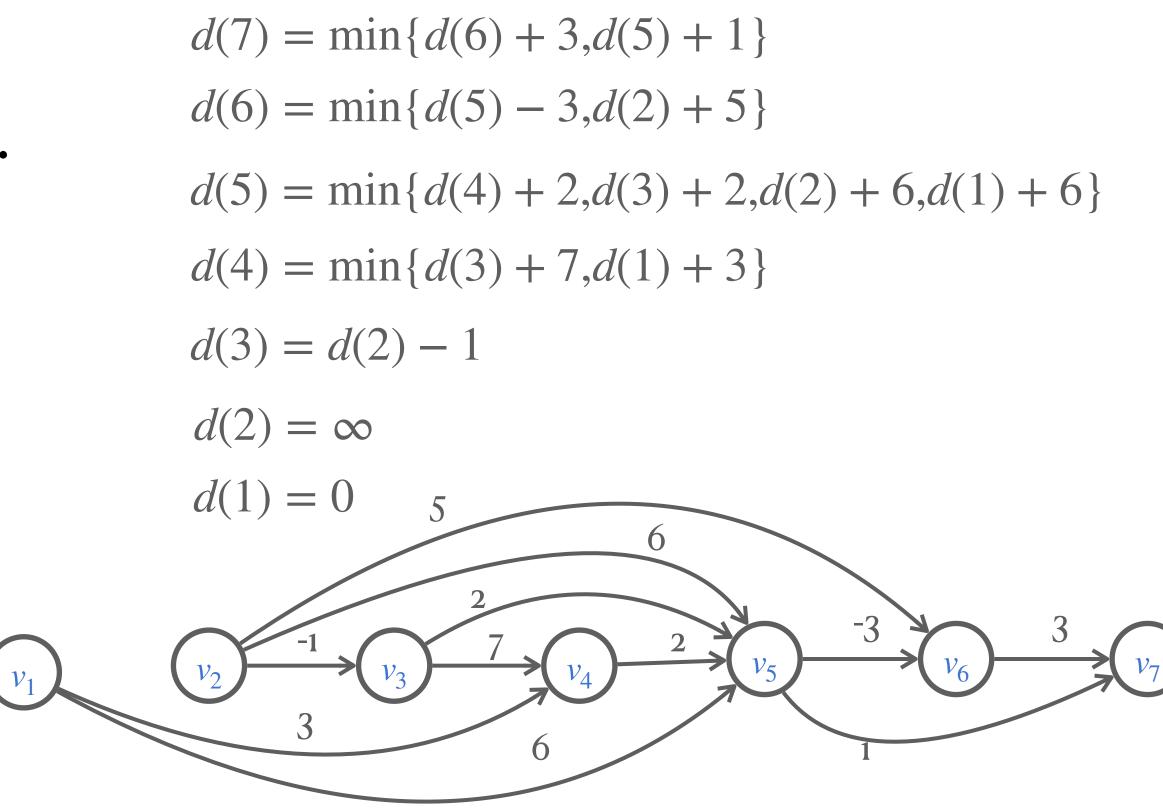
```
Distance(G, s):

// Initialize all d(\cdot) = \infty

1. d(s) = 0

2. For v \in V - \{s\} in topological order

d(v) = \min_{u \to v} \{d(u) + \ell(u, v)\}
```



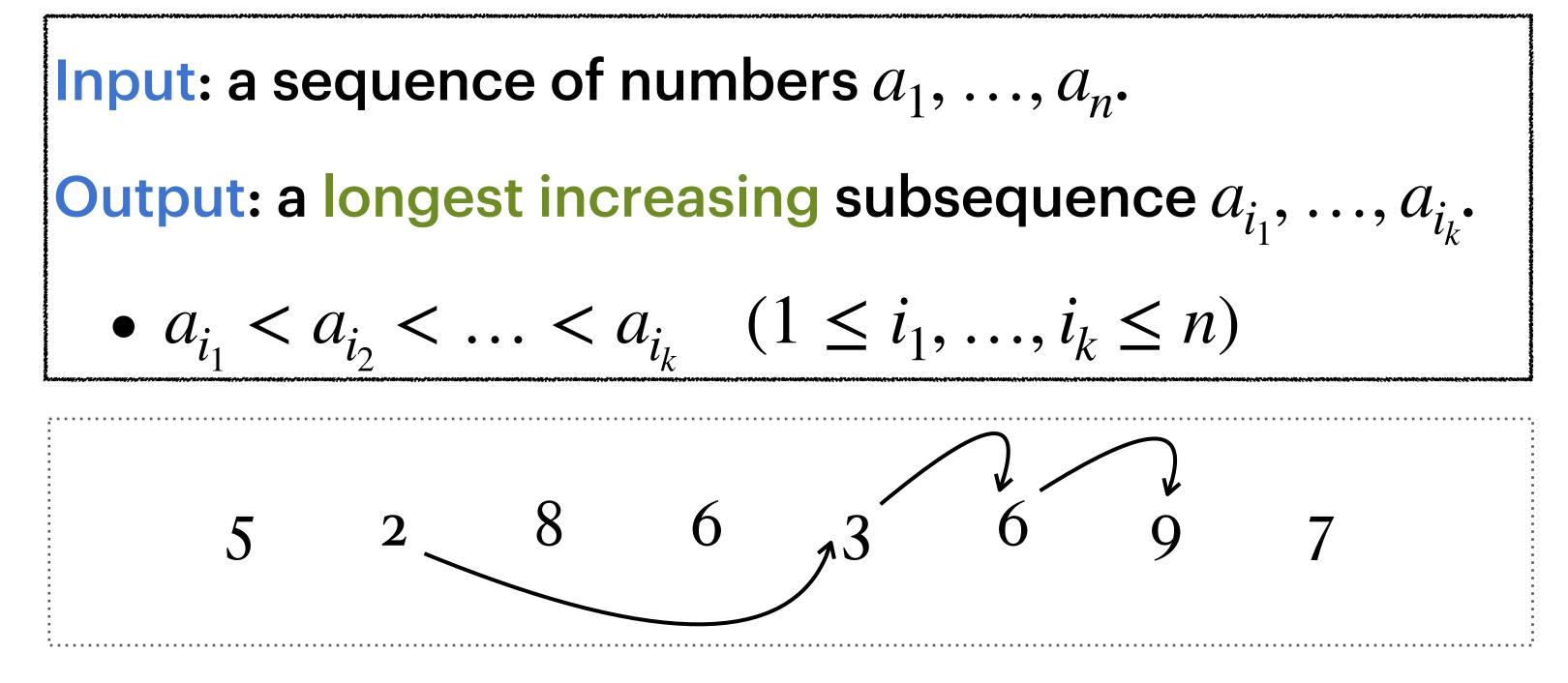
Dynamic programming

- Break up a problem into a series of overlapping subproblems.
- Combine solutions to smaller subproblems to form a solution to large problem. An implicit DAG: nodes = subproblems, edges = dependencies

- Divide-&-Conquer
 - Break up a problem into a series of independent subproblems, typically of much smaller size.
 - Combine solutions to smaller subproblems to form a solution to large problem.

Algorithm design arsenal

Longest increasing subsequences

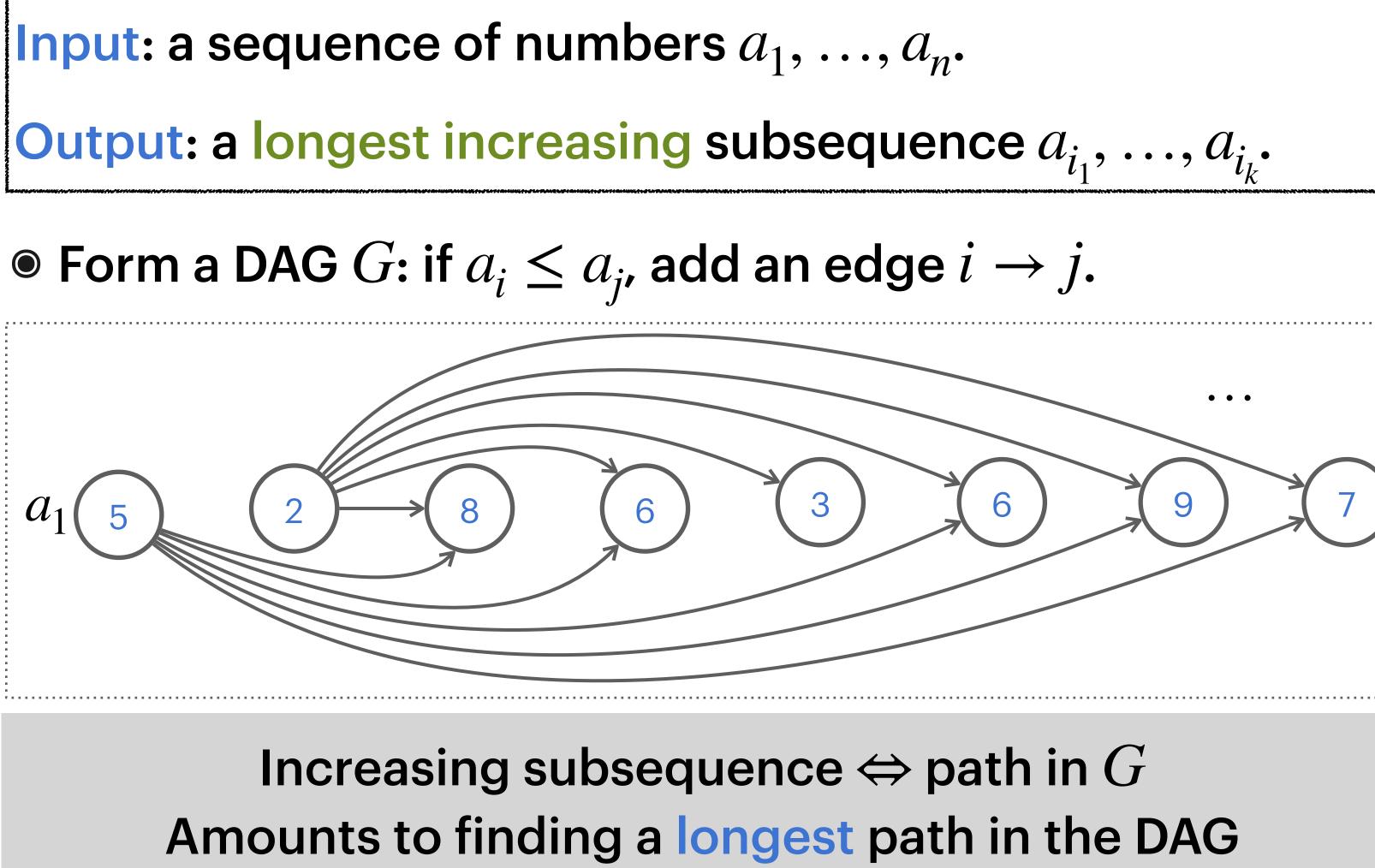


Brute-force algorithm

- Running time: $\Omega(2^n)$

• For each $1 \le k \le n$, check if exists an increasing subsequence of length k.

Dynamic programming approach



Longest increasing subsequence / longest path

Input: a sequence of numbers a_1, \ldots, a_n .

Output: a longest increasing subsequence a_{i_1}, \ldots, a_{i_k} .

LSeq(a): // Initialize all L(j) = 1; length of longest path ending at j. 1. For j = 1, 2, ..., n $L(j) = \max\{1 + L(i)\}$ **2.** Return $\max L(j)$

• Running time: $O(n + m) = O(n^2)$.

- What is the worst case scenario?
- Can you output the subsequence?

Recap on DP

- There is an ordering on the subproblems.
- A relation showing how to solve a subproblem given answers to smaller subproblems (= those appear earlier in the ordering).

Scratch