
Portland State University

Lecture 6
• Topological order cont’d 
• Shortest/longest path in 

DAGs 
• Dynamic programming intro

W’21  CS 584/684 
Algorithm Design & 

Analysis 

Fang Song

Credit: based on slides by K. Wayne



Exercise

2

๏ Let  be a graph with  vertices and  edges. Which of the following 
statements are TRUE?  

• BFS/DFS always run in time .  

• If  is undirected, the connected components of two vertices can be 
identical.  

• If  is directed, the strong components of two vertices can be neither 
identical nor disjoint.  

• There is an algorithm to test strong connectivity of directed  in time
 in the worst-case. 

G n m

O(m + n)
G

G

G
o(n(m + n))



Review: Directed acyclic graphs (DAG)

3

๏ Def. A DAG is a directed graph that contains no directed cycles. 

๏ Application: precedence constraints.  
• Course prerequisite: 350 must be taken before 584/684.  

• Compilation: module  must be complied before .  

• Pipeline of computing jobs: output of job  determines input of job . 

i j

i j

1

2

3

4

5

6

7

G 1

2

3

4

5

6

7

G′ 



Topological order

4

๏ Def. A topological order of a directed graph is an ordering of its nodes 
, so that for every edge  we have . v1, …, vn vi → vj i < j

1

2

3

4

5

6

7

v2

v6

v7

v5

v3

v4

v1

v2 v6 v7v5v3 v4v1

A topological order  

All edges go from left to right

A

C

F

D

B

E

G



1. If  has a topological order, is  necessarily a DAG? 

2. Does every DAG have a topological order? 

G G

5



Q2: Dose every DAG have a topological order?

6

๏ Proof of corollary given Lemma 1 [by induction on number of nodes] 
• Base case: true if . 
• Given a DAG on  nodes, find a node  with no entering edges [Lemma 2]. 

•  is a DAG, since deleting  cannot create cycles.  
• Induction hypothesis,  (with  nodes) has a topological order.  
• Place  first then append nodes of  in topological order [valid because 

 has no entering edges]. 

n = 1
n > 1 v

G − {v} v
G − {v} n − 1

v G − {v}
v

Lemma 2. A DAG  has a node with no entering edges.G

Corollary. If  is a DAG, then  has a topological order.G G

DAG

v



Topological sorting algorithm

7

TopSort( ):  
// count(w)= remaining number of incoming edges 
// S = set of remaining nodes with no incoming edges  
//  topological order 
1. Initialize  and  for all nodes 
2. For  
            Append  to  

For all  with  // delete  from 

If    add  to 

G

V[1,…, n]
S Count( ⋅ )

v ∈ S
v V
w v → w v G

Count(w) − −
Count(w) = = 0 w S

Theorem. TopSort computes a topological order in  time. O(n + m)

, a single scan of adjacency listO(n + m)

, run once per edgeO(1)



Completing the proof

8

๏ Proof [by contradiction] 

• Suppose  is a DAG, and every node has at least one entering edge. 

• Pick any node , and follow edges backwards from .  

• Continue till we visit a node, say , twice. ( ) 

• Let  be the sequence of nodes between successive visits to .  

•  is a cycle. Contradiction!

G

v v

w v ← u ← x… ← w… ← w

C w

C

Lemma 2. A DAG  has a node with no entering edges. G

Directed cycle C

u vxw …



Shortest path in a graph

9

Input: Graph , nodes  and  

Output: . 

G s t .
dist(s, t)

1

2 3

4 5

6

7

8

G
1

2 3

4 5

6

7 8

BFS(1)

dist(1,6) = 3

1

2

3

4

5

6

7

G
1

2

3

4 5

6

BFS(1)

dist(1 → 6) = 2



Shortest path in a weighted graph

10

๏ Weighted graphs 

• Every edge has a length .   

• Length of a path . 

• Distance . 

ℓe

ℓ(P) = ∑
e∈P

ℓe

dist(s, t) = min
P:u⇝v

ℓ(P)

๏ Length function:  

•  if not an edge  
• Model time, distance, cost …  
• Can be negative: fund transfer, 

heat in chemistry reaction … 

ℓ : E → ℤ
ℓ(u, v) = ∞

๏ : BFS solves it.  
๏ How to solve weighted case? 

∀e ∈ E, ℓ(e) = 1



Shortest path in DAGs

11

Input: DAG , length function , nodes  and  

Output: . 

G ℓ s t .
d(t) := dist(s, t)

v2 v6 v7v5v3 v4v1

5

-1
2

6

27
3 6

-3 3

1
d(7) = min{d(6) + 3,d(5) + 1}

๏ Example. What is  ?dist(1 → 7)

d(6) = min{d(5) − 3,d(2) + 5}

d(5) = min{d(4) + 2,d(3) + 2,d(2) + 6,d(1) + 6}
d(4) = min{d(3) + 7,d(1) + 3}

d(3) = d(2) − 1
d(2) = ∞
d(1) = 0

dist(1 → 7) = 5,1 → 4 → 5 → 6 → 7



Shortest path in DAGs: algorithm

12

v2 v6 v7v5v3 v4v1

5

-1
2

6

27

3
6

-3 3

1

d(7) = min{d(6) + 3,d(5) + 1}
d(6) = min{d(5) − 3,d(2) + 5}

d(5) = min{d(4) + 2,d(3) + 2,d(2) + 6,d(1) + 6}
d(4) = min{d(3) + 7,d(1) + 3}

d(3) = d(2) − 1

d(2) = ∞
d(1) = 0

๏ Key observations 

• Reduce to subproblems  

• Subproblems overlap: e.g.,  
both involve . 

• An ordering of subproblems (DAG: 
edges go left to right)

d(6), d(5), …
d(6), d(5)

d(2)

Distance( ):  
// Initialize all  
1.  
2. For  in topological order 
            

G, s
d( ⋅ ) = ∞

d(s) = 0
v ∈ V − {s}

d(v) = min
u→v

{d(u) + ℓ(u, v)}



Algorithm design arsenal

13

๏ Dynamic programming 
• Break up a problem into a series of overlapping subproblems. 
• Combine solutions to smaller subproblems to form a solution to large problem. 

๏ Divide-&-Conquer 
• Break up a problem into a series of independent subproblems, typically of much 

smaller size.  
• Combine solutions to smaller subproblems to form a solution to large problem. 

An implicit DAG: nodes = subproblems, edges = dependencies



Longest increasing subsequences

14

Input: a sequence of numbers .  

Output: a longest increasing subsequence .  

•

a1, …, an

ai1, …, aik

ai1 < ai2 < … < aik (1 ≤ i1, …, ik ≤ n)

5 2 8 6 3 6 9 7

๏ Brute-force algorithm 

• For each , check if exists an increasing subsequence of length .  

• Running time:  

1 ≤ k ≤ n k

Ω(2n)



Dynamic programming approach

15

Input: a sequence of numbers .  

Output: a longest increasing subsequence . 

a1, …, an

ai1, …, aik

2 6 938 65 7a1

…

๏ Form a DAG : if , add an edge . G ai ≤ aj i → j

Increasing subsequence  path in  
Amounts to finding a longest path in the DAG

⇔ G



Longest increasing subsequence / longest path

16

Input: a sequence of numbers .  

Output: a longest increasing subsequence . 

a1, …, an

ai1, …, aik

Recap on DP 
• There is an ordering on the 

subproblems.  
• A relation showing how to 

solve a subproblem given 
answers to smaller 
subproblems (= those appear 
earlier in the ordering). 

LSeq( ):  
// Initialize all ; length of longest path ending at .  
1. For  
             

2. Return 

a
L( j) = 1 j

j = 1,2,…, n
L( j) = max

i→j
{1 + L(i)}

max
j

L( j)

๏ Running time: . 
• What is the worst case scenario? 

๏ Can you output the subsequence?  

O(n + m) = O(n2)



Scratch


