@ Portland State University

W21 CS 584/684 |
Algorithm Design & | Topological order cont'd
Analysis e Shortest/longest path in

| DAGs

——————————————"""""7 ¢ Dynamic programming intro
Fang Song

Lecture 6

Credit: based on slides by K. Wayne

Exercise

® Let G be a graph with n vertices and m edges. Which of the following
statements are TRUE?

e BFS/DFS always run in time O(m + n).

 If Gisundirected, the connected components of two vertices can be
identical.

 If Gis directed, the strong components of two vertices can be neither
identical nor disjoint.

* There is an algorithm to test strong connectivity of directed G in time
o(n(m + n)) in the worst-case.

Review: Directed acyclic graphs (DAG)

® Def. A DAG is a directed graph that contains no directed cycles.

gavil

® Application: precedence constraints.

* Course prerequisite: 350 must be taken before 584/634.
» Compilation: module i must be complied before ;.

* Pipeline of computing jobs: output of job i determines input of job j.

Topological order

® Def. A topological order of a directed graph is an ordering of its nodes

Vi, -+» Vy, SO that for every edge v; — v, we have 1 < .
aYa
G'Q (E) A topological order

(= All edges go from left to right

Vl. If G has a topological order, is G necessarily a DAG?

2. Does every DAG have a topological order?

)2: Dose every DAG have a topological order?

Lemma 2. A DAG G has a node with no entering edges.

Corollary. If G is a DAG, then G has a topological order.

® Proof of corollary given Lemma 1 [by induction on number of nodes]

* Base case: trueifn = 1.
* Given a DAG onn > 1 nodes, find a node v with no entering edges [Lemma 2].

G — {v}isaDAG, since deleting v cannot create cycles.
 Induction hypothesis, G — {v} (with n — 1 nodes) has a topological order.
* Place v first then append nodes of G — {v} in topological order [valid because

v has no entering edgesl]. ‘\g{ DAG

Topological sorting algorithm

TopSort(G):
// count(w)=remaining number of incoming edges
// S = set of remaining nodes with no incoming edges

// V[1,...,n] topological order _
1. Initialize S and Count(-) for all nodes

O(n + m), a single scan of adjacency list

2. Forvels —
Appendvto V
For all w with v — w // delete v from G (1), run once per edge
Count(w) — —
If Countlw) = =0 addwto S _

Theorem. TopSort computes a topological order in O(n + m) time.

Completing the proof

Lemma 2. A DAG G has a node with no entering edges.

® Proof [by contradiction]

» Suppose G is a DAG, and every node has at least one entering edge.

* Pick any node v, and follow edges backwards from v.

* Continue till we visit a node, say w, twice. (v <« u < x... < w... < w)
* Let C be the sequence of nodes between successive visits to w.

* ('is a cycle. Contradiction!

Directed cycle C

Shortest pathina graph

Input: Graph G, nodes s and ¢ .

Output: dist(s, 1).

Shortest path in a weighted graph

® Weighted graphs ® Length function: ¢ : £ — Z
» Every edge has a length 7. o £(u,v) = oo if not an edge
. Length of a path Z(P) = Z e * Model time, distance, cost ...
— * Can be negative: fund transfer,
. Distance dist(s, 1) = ;};glv ¢ (P). heat in chemistry reaction ...

® Ve € E,7(e) = 1: BFS solvesiit.
® How to solve weighted case?

10

Shortest path in DAGs

Input: DAG G, length function £, nodes s and 7.
Output: d(t) := dist(s, t).

® Example. What is dist(1 — 7)?

5
dist(l > 7)=51—->4->5->6->7 / \
oE ot oo
d(7) = min{d(6) + 3.d(5) + 1) @\ /M

d(6) = min{d(5) — 3.d(2) + 5 1

d(S) = min{d4) + 2,d33) + 2,d2) + 6,d(1) + 6}
d(4) = min{d(3) + 7.d(1) + 3} d(2) = oo

d3)=d2)—1 d(1) =0

[

Shortest path in DAGs: algorithm

® Key observations d(7) = min{d(6) + 3,d(5) + 1}
» Reduce to subproblems d(6), d(5), ... 4(0) = minid) = S4(E} 9}
d(5) = min{d(4) + 2,d3) + 2,d(2) + 6,d(1) + 6}
° Subproblems overlap: c.g., d(6), d(S) d(4) = min{d(3) + 7,d(1) + 3}
both involve d(2). d(3) = d2) - 1
* An ordering of subproblems (DAG: d2) =
. dH=0 s
edges go left to right) 6
Distance(G, 5): %\2\9' > (o) S
// Initialize all d(-) = o0 @\ /’Q /@
1. d(s)=0 ° ’

2. Forv € V — {s} in topological order
dv) = mm{du) + £(u,v)}

Uu—v

12

Algorithm design arsenal

® Dynamic programming
* Break up a problem into a series of overlapping subproblems.

* Combine solutions to smaller subproblems to form a solution to large problem.

An implicit DAG: nodes = subproblems, edges = dependencies

@ Divide-&-Conquer

* Break up a problem into a series of independent subproblems, typically of much
smaller size.

* Combine solutions to smaller subproblems to form a solution to large problem.

13

Longest increasing subsequences

Input: a sequence of numbers a,, ..., a,.

Output: a longest increasing subsequence Qj s +ees -

® Brute-force algorithm

* Foreach 1 < k < n, check if exists an increasing subsequence of length «.

* Running time: €2(2")

14

Dynamic programming approach

Input: a sequence of numbers a,, ..., a,.

Output: a longest increasing subsequence Qjsooes .

® Form a DAG G:ifg; < a, add anedge i — J.

Increasing subsequence < pathin G
Amounts to finding a longest path in the DAG

15

Longest increasing subsequence / longest path

Input: a sequence of numbers a,, ..., a,.

Output: a longest increasing subsequence g; , ..., d; .
}J/SIilqitSiaa?loize all L(j) = 1;length of longest path ending at J. Recap on DP
1. Forj=12,...,n * There is an ordering on the
L(j) = mj?i{l + L(i) } subproblems.
2. Return malx JL() * A relation showing how to
: solve a subproblem given
® Running time: O(n + m) = O(n*). answers to smaller
* What is the worst case scenario? subproblems (= those appear

@ ? o ° -
Can you output the subsequence? earlier in the ordering).

16

Scratch

