
Portland State University

Lecture 5
• Connected components
• DAG & Topological order

W’21 CS 584/684

Algorithm Design &

Analysis

Fang Song

Credit: based on slides by A. Smith & K. Wayne

Warm-up exercises

2

1

2 3

4 5

6

7

8

9

๏ Run BFS and DFS starting at node , and form BFS/DFS trees. Decide if
nodes 1 and 9 are connected.

s

๏ True or False. A tree of vertices can have edges. n n

Recap: BFS running time

3

BFS():

// Discoverd[1,…,n] array of bits (explored or not),
initialized to all zeros.

// Queue

1. Set Discovered[s] = 1

2. EnQ(s) // add s to Q

3. While not empty DeQ(u)

 For each (u,v) incident to u

If Discovered[v]=0 then
Set Discovered[v]=1

Add edge (u,v) to T

EnQ(v)

s

Q ← ∅

Q

Theorem. BFS takes time (linear in input size). O(m + n)

, run once for all O(1)
, run once per vertexO(1)

, run twice per edgeO(1) ≤

Why not ?n ⋅ m

Connected components

4

๏ B/DFS tell more than connectivity.s-t Connected component of containing :
all nodes reachable from .

G s
s

1

2 3

4 5 6

7

8 9

BFS(1) BFS(7)

1

2 3

4 5

6

7

8

9

G

๏ Claim. For any tow nodes and , their connected components are either
identical or disjoint.

s t

The set of all connected components

5

๏ How to find all?

๏ How fast?

๏ Why care?

1

2 3

4 5 6

7

8 9

BFS(1) BFS(7)

1

2 3

4 5

6

7

8

9

G

• Iterate over , run B/DFS.

• .

• Basic topology about .

V

∑
i

ni + mi = O(m + n)

G

Directed graphs

6

๏ A directed graph

• Edge leaves node and enters node .

• Adjacency matrix: asymmetric

• Adjacency list: track outgoing edges (or two for in and out)

G = (V, E)
u → v u v

1

2

3

4

5

6

7

G

… Adjout[2] = {3}, Adjin = {1,4}

Directed graph Node Directed edges

Transportation Intersections One-way street

Social network People Following

Web Webpage Hyperlink

Citation Article Citing

๏ Examples.

Connectivity in directed graphs

7

๏ Directed reachability. Find all nodes reachable from a node .

• BFS/DFS apply.

• : there is a path from to . Need not be .

s

s ⇝ t s t t ⇝ s

1

2

3

4

5

6

7

G

๏ Application: web crawler.

• Start from web page . Find all web pages linked from , via one or more hops.s s

DFS
1

2

1

2 4 5

3 6

…
BFS 1

2 4 5

1

2 4 5

3 6

Strong connectivity

8

๏ Def. and are mutually reachable ()

๏ Observation. If and , then .

u v u ↭ v
u ↭ v v ↭ w u ↭ w

๏ Proof. [Show both “if” and “only if”]

• (only if) By definition of “strongly connected”.

• (if) for any two nodes :

⇒
⇐ u, v

Lemma. Let be any node. is strongly connected iff. every node is reachable
from , and is reachable from every node.

s G
s s

Def. A graph is strongly connected if every pair of nodes is mutually reachable.

 by following then .

 by following then .

u ⇝ v u ⇝ s s ⇝ v
v ⇝ u v ⇝ s s ⇝ u

s
u

v

Testing strong connectivity

9

๏ Proof. [construction of an algorithm. Fill in the analysis on your own.]

Theorem. Theres is an time algorithm that determines if is strongly
connected.

O(m + n) G

1. Pick any node .

2. Run BFS from on .

3. Run BFS from on .

4. Return true if all nodes reached in both BFS runs.

s
s G
s Grev

1

2

3

4

G 1

2

3

4

: reverse
orientation of
all edges in .

Grev

G

Exercise

10

๏ Determine if the graph is strongly connected.

G Grev

Strong (connected) components

11

๏ Def. A strong component is a maximal subset of mutually reachable nodes.

๏ Obs. For any two nodes and in a directed graph, their strong components
are either identical or disjoint.

s t

Theorem. Theres is an time algorithm
that finds all strong components.

O(m + n)

Directed acyclic graphs (DAG)

12

๏ Def. A DAG is a directed graph that contains no directed cycles.

๏ Application: precedence constraints.

• Course prerequisite: 350 must be taken before 584/684.

• Compilation: module must be complied before .

• Pipeline of computing jobs: output of job determines input of job .

i j

i j

1

2

3

4

5

6

7

G 1

2

3

4

5

6

7

G′￼

Topological order

13

๏ Def. A topological order of a directed graph is an ordering of its nodes
, so that for every edge we have . v1, …, vn vi → vj i < j

1

2

3

4

5

6

7

v2

v6

v7

v5

v3

v4

v1

v2 v6 v7v5v3 v4v1

A topological order

All edges go from left to right

1. If has a topological order, is necessarily a DAG?

2. Does every DAG have a topological order?

G G

14

Q1: If has a topological order, is necessarily a DAG?G G

15

๏ Proof [by contradiction]

• Suppose has topological order ; and also has a directed cycle .

• Let be the lowest-indexed node in , be the node just before in .

• Then is an edge & by our choice .

• But since is a topological order, if is an edge, then .

• Contradiction!

G v1, …, vn G C

vi C vj vi C

vj → vi i < j

v1, …, vn vj → vi j < i

Lemma 1. If has a topological order, then is a DAG. G G

vjviv1

Directed cycle C

vn

Q2: Dose every DAG have a topological order?

16

๏ Proof of corollary given Lemma 1 [by induction on number of nodes]

• Base case: true if .

• Given a DAG on nodes, find a node with no entering edges [Lemma 1].

• is a DAG, since deleting cannot create cycles.

• Induction hypothesis, (with nodes) has a topological order.

• Place first then append nodes of in topological order [valid because

 has no entering edges].

n = 1
n > 1 v

G − {v} v
G − {v} n − 1

v G − {v}
v

Lemma 2. A DAG has a node with no entering edges.G

Corollary. If is a DAG, then has a topological order.G G

DAG

v

Topological sorting algorithm

17

TopSort():

// count(w)= remaining number of incoming edges

// S = set of remaining nodes with no incoming edges

// topological order

1. Initialize and for all nodes

2. For

 Append to

For all with // delete from

If add to

G

V[1,…, n]
S Count(⋅)

v ∈ S
v V
w v → w v G

Count(w) − −
Count(w) = = 0 w S

Theorem. TopSort computes a topological order in time. O(n + m)

, a single scan of adjacency listO(n + m)

, run once per edgeO(1)

Completing the proof

18

๏ Proof [by contradiction]

• Suppose is a DAG, and every node has at least one entering edge.

• Pick any node , and follow edges backwards from . Repeat till we visit a node,
say , twice. ()

• Let be the sequence of nodes between successive visits to .

• is a cycle. Contradiction!

G

v v
w v ← u ← x… ← w… ← w

C w

C

Lemma 1. A DAG has a node with no entering edges. G

Directed cycle C

u vxw …

Scratch

