

W'21 CS 584/684 Algorithm Design & Analysis

Fang Song

Lecture 5

Connected components DAG & Topological order

Credit: based on slides by A. Smith & K. Wayne

9

Warm-up exercises

- True or False. A tree of n vertices can have n edges.
- In the second second

Recap: BFS running time

Theorem. BFS takes O(m + n) time (linear in input size).

Why not $n \cdot m$?

BFS(s): // Discoverd[1,...,n] array of bits (explored or not), initialized to all zeros. // Queue $Q \leftarrow \emptyset$ 1. Set Discovered [s] = 1O(1), run once for all 2. EnQ(s) // add s to QO(1), run once per vertex 3. While Q not empty DeQ(u)For each (u,v) incident to u If Discovered[v]=0 then O(1), run \leq twice per edge Set Discovered [v]=1Add edge (u,v) to T EnQ(v)

Connected components

B/DFS tell more than s-t connectivity.

Claim. For any tow nodes s and t, their connected components are either identical or disjoint.

The set of all connected components

- How to find all?
- How fast?
- Why care?

- $\sum_{i} n_i + m_i = O(m+n).$

• Iterate over V, run B/DFS.

• Basic topology about G.

Directed graphs

- A directed graph G = (V, E)
 - Edge $u \rightarrow v$ leaves node u and enters node v.
 - Adjacency matrix: asymmetric
 - Adjacency list: track outgoing edges (or two for in and out)

Directed graph	Node	Directed edges
Transportation	Intersections	One-way street
Social network	People	Following
Web	Webpage	Hyperlink
Citation	Article	Citing

... $Adj_{out}[2] = \{3\}, Adj_{in} = \{1, 4\}$

Connectivity in directed graphs

Directed reachability. Find all nodes reachable from a node s.

- BFS/DFS apply.
- $s \rightsquigarrow t$: there is a path from s to t. Need not be $t \rightsquigarrow s$.

- Application: web crawler.
 - Start from web page s. Find all web pages linked from s, via one or more hops.

Strong connectivity

- Def. u and v are mutually reachable ($u \leftrightarrow v$)
- Observation. If $u \leftrightarrow v$ and $v \leftrightarrow w$, then $u \leftrightarrow w$.

Def. A graph is strongly connected if every pair of nodes is mutually reachable.

Lemma. Let s be any node. G is strongly connected iff. every node is reachable from s, and s is reachable from every node.

- Proof. [Show both "if" and "only if"]
 - \Rightarrow (only if) By definition of "strongly connected".
 - \leftarrow (if) for any two nodes $u, v: u \rightsquigarrow v$ by following $u \rightsquigarrow s$ then $s \rightsquigarrow v$.

 $v \rightsquigarrow u$ by following $v \rightsquigarrow s$ then $s \rightsquigarrow u$.

Testing strong connectivity

Theorem. Theres is an O(m + n) time algorithm that determines if G is strongly connected.

Proof. [construction of an algorithm. Fill in the analysis on your own.]

G^{rev}: reverse orientation of all edges in G.

- Pick any node *s*.
- Run **BFS** from s on G. 2.
- 3. Run **BFS** from s on G^{rev} .
- 4. Return true if all nodes reached in both **BFS** runs.

Output Determine if the graph is strongly connected.

Exercise

Strong (connected) components

- are either identical or disjoint.

Theorem. Theres is an O(m + n) time algorithm that finds all strong components.

SIAM J. COMPUT. Vol. 1, No. 2, June 1972

DEPTH-FIRST SEARCH AND LINEAR GRAPH ALGORITHMS*

ROBERT TARJAN[†]

Abstract. The value of depth-first search or "backtracking" as a technique for solving problems is illustrated by two examples. An improved version of an algorithm for finding the strongly connected components of a directed graph and an algorithm for finding the biconnected components of an undirect graph are presented. The space and time requirements of both algorithms are bounded by

Def. A strong component is a maximal subset of mutually reachable nodes.

• Obs. For any two nodes s and t in a directed graph, their strong components

10'

Directed acyclic graphs (DAG)

Def. A DAG is a directed graph that contains no directed cycles.

- Application: precedence constraints.
 - Course prerequisite: 350 must be taken before 584/684.
 - Compilation: module *i* must be complied before *j*.
 - Pipeline of computing jobs: output of job *i* determines input of job *j*.

Topological order

• Def. A topological order of a directed graph is an ordering of its nodes $v_1, ..., v_n$, so that for every edge $v_i \rightarrow v_j$ we have i < j.

A topological order All edges go from left to right

1. If G has a topological order, is G necessarily a DAG? 2. Does every DAG have a topological order?

Q1: If G has a topological order, is G necessarily a DAG?

Lemma 1. If G has a topological order, then G is a DAG.

Proof [by contradiction]

- Suppose G has topological order v_1, \ldots, v_n ; and G also has a directed cycle C. • Let v_i be the lowest-indexed node in C, v_i be the node just before v_i in C. • Then $v_i \rightarrow v_i$ is an edge & by our choice i < j.
- But since v_1, \ldots, v_n is a topological order, if $v_i \rightarrow v_i$ is an edge, then j < i.
- Contradiction!

Q2: Dose every DAG have a topological order?

Lemma 2. A DAG G has a node with no entering edges.

Corollary. If G is a DAG, then G has a topological order.

- Proof of corollary given Lemma 1 [by induction on number of nodes]
 - Base case: true if n = 1.
 - Given a DAG on n > 1 nodes, find a node v with no entering edges [Lemma 1].
 - $G \{v\}$ is a DAG, since deleting v cannot create cycles.
 - Induction hypothesis, $G \{v\}$ (with n 1 nodes) has a topological order.
 - Place v first then append nodes of $G \{v\}$ in topological order [valid because] *v* has no entering edges].

Topological sorting algorithm

TopSort(G):// count(w) = remaining number of incoming edges// S = set of remaining nodes with no incoming edges// V[1,...,n] topological order1. Initialize S and Count(\cdot) for all nodes2. For $v \in S$ Append v to VFor all w with $v \rightarrow w$ // delete v from GCount(w) - -If Count(w) = = 0 add w to S

Theorem. TopSort computes a topological order in O(n + m) time.

Completing the proof

Lemma 1. A DAG G has a node with no entering edges.

- Proof [by contradiction]
 - Suppose G is a DAG, and every node has at least one entering edge.
 - Pick any node v, and follow edges backwards from v. Repeat till we visit a node, say w, twice. $(v \leftarrow u \leftarrow x \dots \leftarrow w \dots \leftarrow w)$
 - Let C be the sequence of nodes between successive visits to w.
 - *C* is a cycle. Contradiction!

Scratch