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Warm-up exercises
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๏ Run BFS and DFS starting at node , and form BFS/DFS trees. Decide if 
nodes 1 and 9 are connected. 

s

๏ True or False. A tree of  vertices can have  edges. n n



Recap: BFS running time
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BFS( ): 

// Discoverd[1,…,n] array of bits (explored or not), 
initialized to all zeros.

// Queue 

1. Set Discovered[s] = 1

2. EnQ(s) // add s to Q

3. While  not empty  DeQ(u)

            For  each (u,v) incident to u

If Discovered[v]=0 then
Set Discovered[v]=1

Add edge (u,v) to T

EnQ(v)

s

Q ← ∅

Q

Theorem. BFS takes  time (linear in input size). O(m + n)

, run once for all O(1)
, run once per vertexO(1)

, run  twice per edgeO(1) ≤

Why not ?n ⋅ m



Connected components 
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๏ B/DFS tell more than  connectivity.s-t Connected component of  containing : 
all nodes reachable from . 
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๏ Claim. For any tow nodes  and , their connected components are either 
identical or disjoint. 

s t



The set of all connected components
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๏ How to find all?


๏ How fast?


๏ Why care?
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• Iterate over , run B/DFS.


• .


• Basic topology about .

V

∑
i

ni + mi = O(m + n)

G



Directed graphs
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๏ A directed graph 


• Edge  leaves node  and enters node . 

• Adjacency matrix: asymmetric

• Adjacency list: track outgoing edges (or two for in and out)

G = (V, E)
u → v u v
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… Adjout[2] = {3}, Adjin = {1,4}

Directed graph Node Directed edges

Transportation Intersections One-way street

Social network People Following

Web Webpage Hyperlink

Citation Article Citing

๏ Examples.



Connectivity in directed graphs
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๏ Directed reachability. Find all nodes reachable from a node .

• BFS/DFS apply. 


• : there is a path from  to . Need not be . 
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s ⇝ t s t t ⇝ s
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๏ Application: web crawler.


• Start from web page . Find all web pages linked from , via one or more hops.s s

DFS
1

2

1

2 4 5

3 6

…
BFS 1

2 4 5

1

2 4 5

3 6



Strong connectivity
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๏ Def.   and  are mutually reachable ( )

๏ Observation.  If  and , then .

u v u ↭ v
u ↭ v v ↭ w u ↭ w

๏ Proof. [Show both “if” and “only if”]


•  (only if ) By definition of “strongly connected”.


•  (if ) for any two nodes : 

⇒
⇐ u, v

Lemma. Let  be any node.  is strongly connected iff. every node is reachable 
from , and  is reachable from every node. 

s G
s s

Def. A graph is strongly connected if every pair of nodes is mutually reachable. 

 by following  then .

 by following  then .


u ⇝ v u ⇝ s s ⇝ v
v ⇝ u v ⇝ s s ⇝ u

s
u

v



Testing strong connectivity
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๏ Proof. [construction of an algorithm. Fill in the analysis on your own.]

Theorem. Theres is an  time algorithm that determines if  is strongly 
connected. 

O(m + n) G

1. Pick any node . 

2. Run BFS from  on . 

3. Run BFS from  on . 

4. Return true if all nodes reached in both BFS runs.

s
s G
s Grev
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: reverse 
orientation of 
all edges in . 

Grev

G



Exercise
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๏ Determine if the graph is strongly connected. 

G Grev



Strong (connected) components
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๏ Def. A strong component is a maximal subset of mutually reachable nodes.

๏ Obs. For any two nodes  and  in a directed graph, their strong components 
are either identical or disjoint. 

s t

Theorem. Theres is an  time algorithm 
that finds all strong components. 

O(m + n)



Directed acyclic graphs (DAG)
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๏ Def. A DAG is a directed graph that contains no directed cycles. 

๏ Application: precedence constraints. 

• Course prerequisite: 350 must be taken before 584/684. 


• Compilation: module  must be complied before . 


• Pipeline of computing jobs: output of job  determines input of job . 
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Topological order
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๏ Def. A topological order of a directed graph is an ordering of its nodes 
, so that for every edge  we have . v1, …, vn vi → vj i < j

1
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v2

v6

v7

v5

v3

v4

v1

v2 v6 v7v5v3 v4v1

A topological order 


All edges go from left to right



1. If  has a topological order, is  necessarily a DAG?


2. Does every DAG have a topological order? 

G G

14



Q1: If  has a topological order, is  necessarily a DAG?G G
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๏ Proof [by contradiction]


• Suppose  has topological order ; and  also has a directed cycle . 


• Let  be the lowest-indexed node in ,  be the node just before  in .


• Then  is an edge & by our choice .


• But since  is a topological order, if  is an edge, then . 


• Contradiction!

G v1, …, vn G C

vi C vj vi C

vj → vi i < j

v1, …, vn vj → vi j < i

Lemma 1. If  has a topological order, then  is a DAG. G G

vjviv1

Directed cycle C

vn



Q2: Dose every DAG have a topological order?
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๏ Proof of corollary given Lemma 1 [by induction on number of nodes]

• Base case: true if .

• Given a DAG on  nodes, find a node  with no entering edges [Lemma 1].


•  is a DAG, since deleting  cannot create cycles. 

• Induction hypothesis,  (with  nodes) has a topological order. 

• Place  first then append nodes of  in topological order [valid because 

 has no entering edges]. 

n = 1
n > 1 v

G − {v} v
G − {v} n − 1

v G − {v}
v

Lemma 2. A DAG  has a node with no entering edges.G

Corollary. If  is a DAG, then  has a topological order.G G

DAG

v



Topological sorting algorithm
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TopSort( ): 

// count(w)= remaining number of incoming edges

// S = set of remaining nodes with no incoming edges 

//  topological order

1. Initialize  and  for all nodes

2. For 

            Append  to 


For all  with  // delete  from 

If    add  to 

G

V[1,…, n]
S Count( ⋅ )

v ∈ S
v V
w v → w v G

Count(w) − −
Count(w) = = 0 w S

Theorem. TopSort computes a topological order in  time. O(n + m)

, a single scan of adjacency listO(n + m)

, run once per edgeO(1)



Completing the proof
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๏ Proof [by contradiction]


• Suppose  is a DAG, and every node has at least one entering edge.


• Pick any node , and follow edges backwards from . Repeat till we visit a node, 
say , twice. ( )


• Let  be the sequence of nodes between successive visits to . 


•  is a cycle. Contradiction!

G

v v
w v ← u ← x… ← w… ← w

C w

C

Lemma 1. A DAG  has a node with no entering edges. G

Directed cycle C

u vxw …



Scratch


