@ Portland State University

W21 CS 584/684
Algorithm Design & ' e Connected components
Analysis * DAG & Topological order

Lectured

Fang Song |

Credit: based on slides by A. Smith & K. Wayne

Warm-up exercises

® True or False. A tree of n vertices can have n edges.

® Run BFS and DFS starting at node s, and form BFS/DFS trees. Decide if
nodes 1 and 9 are connected.

Recap: BEFS running time

Theorem. BFS takes O(m + n) time (linear in input size).

Why not n - m?

BES():

// Discoverd[l,...,n] array of bits (explored or not),

initialized to all zeros.

// Queue O «— &
1. Set Discovered[s]=1

2. EnQ(s)//addsto@
3. While O not empty De@Q(u)
For each (u,v) incident to u
I Discovered|[v]=0 then
Set Discovered|[v]=1
Addedge (u,v)toT
EnQ(v)

O(1), run once for all

(1), run once per vertex

O(1), run < twice per edge

Connected components

® B/DFS tell more than 5-f connectivity. Connected component of G containing s:

all nodes reachable from s.

® Claim. For any tow nodes s and 7, their connected components are either
identical or disjoint.

The set of all connected components

® How to find all? e Iterate over V, run B/DFS.

. Zni+mi=0(m+n).

l

® How fast?

® Why care? * Basic topology about G.

5

Directed graphs

® A directed graph G = (V, E)

 Edge u — vleaves node u and enters node v.

* Adjacency matrix: asymmetric

* Adjacency list: track outgoing edges (or two for in and out)

® Examples.

Directed graph

Node

Directed edges

Transportation

Intersections

One-way street

Social network People Following
Web Webpage Hyperlink
Citation Article Citing

Connectivity in directed graphs
® Directed reachability. Find all nodes reachable from a node s.
* BFS/DEFS apply.

e § w t:thereis a path from s to . Need not be # w s.

® Application: web crawler.

 Start from web page s. Find all web pages linked from s, via one or more hops.

Strong connectivity

® Def. u and v are mutually reachable (u <~ V)

® Observation. If u «~» vand v «» w, then u «» w.

Def. A graph is strongly connected if every pair of nodes is mutually reachable.

Lemma. Let s be any node. G is strongly connected iff. every node is reachable
from s, and s is reachable from every node.

® Proof. [Show both “if” and “only if"]
* = (only if) By definition of “strongly connected”.

o & (if) for any two nodes u, v: u ~ v by following u ~ s thens w v.

v « u by following v v s then s w u.

8

Testing strong connectivity

Theorem. Theres is an O(m1 + 1) time algorithm that determines if G is strongly
connected.

® Proof. [construction of an algorithm. Fill in the analysis on your own.]

G G™": reverse P
orientation of ,
@é— OO

all edges in G.
of ©

1. Pick any node s.

2. Run BFS from s on G.

3. Run BFS from s on (G'“",

4. Return true if all nodes reached in both BF'S runs.

Exercise

® Determine if the graph is strongly connected.

e AR A

10

Strong (connected) components

® Def. A strong component is a maximal subset of mutually reachable nodes.

® Obs. For any two nodes s and 7 in a directed graph, their strong components
are either identical or disjoint.

0

Theorem. Theres is an O(m + n) time algorithm
that finds all strong components. @Cg

SIAM J. CoMmpPuUT.
Vol. 1, No. 2, June 1972

i
Om6

DEPTH-FIRST SEARCH AND LINEAR GRAPH ALGORITHMS*

ROBERT TARJANT

Abstract. The value of depth-first search or “backtracking’ as a technique for solving problems is
illustrated by two examples. An improved version of an algorithm for finding the strongly connected
components of a directed graph and an algorithm for finding the biconnected components of an un-
direct graph are presented. The space and time requirements of both algorithms are bounded by

[

Directed acyclic graphs (DAG)

® Def. A DAG is a directed graph that contains no directed cycles.

gavil

® Application: precedence constraints.

* Course prerequisite: 350 must be taken before 584/634.
» Compilation: module i must be complied before ;.

* Pipeline of computing jobs: output of job i determines input of job j.

12

Topological order

® Def. A topological order of a directed graph is an ordering of its nodes

Vi, -+» Vy, SO that for every edge v; — v, we have 1 < .

A topological order

All edges go from left to right

1. If G hasatopological order, is G necessarily a DAG?

2. Does every DAG have a topological order?

14

Q1:If Ghasatopological order, is G necessarily a DAG?

Lemma 1. If G has a topological order, then G is a DAG.

® Proof [by contradiction]

» Suppose G has topological order v, ..., v, ; and G also has a directed cycle C.

» Letv; be the lowest-indexed node in C, v; be the node just before v; in C.

» Thenv; — v;is an edge & by our choice i < .

» Butsincevy, ..., v, is a topological order, it v; — v;is an edge, then j < ..

* Contradiction!

G O W=0U O O O ®

Directed cycle C

15

)2: Dose every DAG have a topological order?

Lemma 2. A DAG G has a node with no entering edges.

Corollary. If G is a DAG, then G has a topological order.

® Proof of corollary given Lemma 1 [by induction on number of nodes]

* Base case: trueifn = 1.
* Given a DAG onn > 1 nodes, find a node v with no entering edges [LLemma 1].

G — {v}isaDAG, since deleting v cannot create cycles.
 Induction hypothesis, G — {v} (with n — 1 nodes) has a topological order.
* Place v first then append nodes of G — {v} in topological order [valid because

v has no entering edgesl]. ‘\g{ DAG

Topological sorting algorithm

TopSort(G):
// count(w)=remaining number of incoming edges
// S = set of remaining nodes with no incoming edges

// V[1,...,n] topological order _
1. Initialize S and Count(-) for all nodes

O(n + m), a single scan of adjacency list

2. Forvels —
Appendvto V
For all w with v — w // delete v from G (1), run once per edge
Count(w) — —
If Countlw) = =0 addwto S _

Theorem. TopSort computes a topological order in O(n + m) time.

17

Completing the proof

Lemma 1. A DAG G has a node with no entering edges.

® Proof [by contradiction]

» Suppose G is a DAG, and every node has at least one entering edge.

 Pick any node v, and follow edges backwards from v. Repeat till we visit a node,
say W, twiCce. (V «— U < X... < W... < W)

* Let C be the sequence of nodes between successive visits to w.

* ('is a cycle. Contradiction!

Directed cycle C

18

Scratch

