
Portland State University

Lecture 4
• Graphs
• Graph traversal

• BFS

• DFS

W’21 CS 584/684

Algorithm Design &

Analysis

Fang Song

Credit: based on slides by A. Smith & K. Wayne

1

2

3

f(n) vs. nlogb aT(n)

Θ(nlogb a)

Θ(nlogb a log n)

Θ(f(n))

f(n) = O(n(logb a)−ϵ) for some ϵ > 0.

f(n) = O(nlogb a)

f(n) = Ω(n(logb a)+ϵ) for some ϵ > 0,
and af(n/b) ≤ cf(n) for some c < 1.

Recall: master theorem

2

Graphs

3

๏ A graph is a set of vertices that are pairwise connected by edges.

• Two categories: directed vs. undirected.

๏ Why care about graphs?

• Graphs are a very useful abstraction.

• Graphs have numerous applications.

• A lot of graph algorithms exist (and more under way).

Versatile abstraction

4

Application Vertices Edges

Traffic Intersections Roads

Social network People Friendship

Game Board position Legal move

Financial Stock/currency Transactions

Programs Procedures Procedure call

Defining graphs

5

๏ An undirected graph consists of

• : a finite set. (Vertex/node set)

• (Edge set)

• NB. Self loop not allowed.

G = (V, E)
V

E ⊆ {(u, v) : u, v ∈ V} .
(u, u)

๏ A directed graph consists of

• : a finite set. (Vertex/node set)

• (Edge set)

• The set of edges need NOT be symmetric.

G = (V, E)
V

E ⊆ {u → v : u, v ∈ V} .

Graph terminology

6

๏ If is an edge in a graph, then is called adjacent to . (a.k.a neighbors)

๏ Edge is said to be incident to

๏ Degree of a vertex : the number of edges incident to the vertex .

e = (u, v) v u
e u and v .

d(u) u

๏ A path is a sequence of vertices that are connected by edges.

• , s.t. for all

๏ A cycle is a path whose first and last vertices are the same.

๏ Two vertices are connected if and only if (iff.) there is a path between them.

{v1, …, vk} (vi, vi+1) ∈ E i = 1,…, k − 1.

Degree d(u) = 3 Path Cycle

๏ Theorem. Let be an undirected graph on nodes.
Any two of the following statements imply the third.

a. is connected.

b. does not contain a cycle.

c. has edges.

G n

G
G
G n − 1

Trees

7

๏ A graph is connected if every pair of vertices are connected.

๏ A tree is an undirected graph that is connected and does not contain a cycle.

u & v

1
2

3

4

5
6

7

8

9

Rooted trees

8

๏ Given a tree, choose a root node , and orient each edge away from .

• Models hierarchical structure.

r r

1
2

3

4

5
6

7

8

9

1

2

3 4

5

6

7

8 9

Root

Child of 7

Sibling of 9

Parent of 8,9

Ancestor of 9

Exploring a graph

๏ Breadth-first search (BFS)

• Explore children in order of distance to start node.

๏ Depth-first search (DFS)

• Recursively explore node’s children before exploring siblings.

Given: vertices .

Goal: decide if there is a path from to .

s, t ∈ V

s t

Breadth-first search

10

๏ Intuition. Explore outward from in all possible directions.

• Adding nodes one layer at a time.

s

Analogy: wave front of a ripple

•

•

•

L0 = {s}
L1 = {neighbors of L0}
L1 = {neighbors of L1 not in L0 & L1}

Understanding BFS

11

๏ Running time: linear [more to come]

๏ For each , consists of all nodes at distance exactly from .

๏ There is a path from to iff. appears in some layer.

๏ Let be a BFS tree of , and an edge of . Then the levels

of and differ by at most 1.

O(|V | + |E |)
i Li i s

s t t
T G = (V, E) (u, v) G

u v

1

2 3

4 5

6

7

8

๏ BFS demo.
1

2 3

1

2 3

4 5 7 8

1

2 3

4 5 7 8

6

L0

L1

L2

L3

Depth-first search

12

๏ Intuition. Childen prior to siblings.

DFS: an impatient maze runner BFS: a patient maze runner

DFS in action

13

1

2 3

4 5

6

7

8

Understanding DFS

14

๏ Running time: linear [more to come]

๏ Let be a DFS tree of , and let be nodes in .

• If is an edge of that is not an edge of .

• Then one of or is an ancestor of the other.

O(|V | + |E |)
T G = (V, E) u & v T
(u, v) G T

u v

1

2 3

4 5

6

7

8

DFS Tree 1

2

3

4

5 7

86

1

2 3

4 5 7 8

6

Contrast with BFS Tree

Implementing BFS/DFS

15

๏ Generic traversal algorithm

To implement it, need to choose

๏ Graph representation

๏ Data structure to track …

• Vertices already explored.

• Edges to be followed next.

These choices affect
the order of traversal

1.

2. While there is an edge where and , add to .

R = {s}
(u, v) u ∈ R v ∉ R v R

Graph representation 1: adjacency matrix

16

๏ Given:

๏ Adjacency matrix : , iff. is an edge.

G = (V, E), |V | = n, |E | = m .
A n × n Auv = 1 (u, v) ∈ E

๏ Basic properties

• Lookup an edge: .

• List all neighbors:

• Symmetric for undirected graphs.

• Space: , good for dense graphs.

Θ(1)
Θ(n) .

Θ(n2)

1

2 3

4 5

6

7

8

Graph representation 1: adjacency list

17

๏ Given:

๏ Adjacency list : .

G = (V, E), |V | = n, |E | = m .
Adj ∀u ∈ V, Adj[u] = {v : v adjacent to u}

๏ Basic properties

• Lookup an edge: .

• Space: , good for sparse
graphs.

Θ(degree(u))
Θ(m + n)

1

2 3

4 5

6

7

8

Review: queue & stack

18

1. Queue: first-in first-out (FIFO)

In: EnQ Out: DeQ

2. stack: last-in first-out (FIFO)

In: Push Out: Pop

BFS implementation

19

1

2 3

4 5

6

7

8

Input: by adjacency list . Start node .

Goal: BFS tree (rooted at).

G = (V, E) Adj s

T s

v u

LiLi+1

BFS():

// Discoverd[1,…,n] array of bits (explored or not),
initialized to all zeros.

// Queue

1. Set Discovered[s] = 1

2. EnQ(s) // add s to Q

3. While not empty DeQ(u)

 For each (u,v) incident to u

If Discovered[v]=0 then
Set Discovered[v]=1

Add edge (u,v) to T

EnQ(v)

s

Q ← ∅

Q

BFS running time

20

BFS():

// Discoverd[1,…,n] array of bits (explored or not),
initialized to all zeros.

// Queue

1. Set Discovered[s] = 1

2. EnQ(s) // add s to Q

3. While not empty DeQ(u)

 For each (u,v) incident to u

If Discovered[v]=0 then
Set Discovered[v]=1

Add edge (u,v) to T

EnQ(v)

s

Q ← ∅

Q

Theorem. BFS takes time (linear in input size). O(m + n)

, run once for all O(1)
, run once per vertexO(1)

, run twice per edgeO(1) ≤

DFS implementation

21

BFS():

// Discoverd[1,…,n] array of bits (explored or not),
initialized to all zeros.

// Stack

1. Set Discovered[s] = 1

2. Push(s) // add s to S

3. While not empty Pop(u)

If Discovered[v]=0 then
Set Discovered[u]=1

For each incident to

Push(v)

s

S ← ∅

S

(u, v) u

uv

Push Pop

๏ Exercise. How to build DFS tree along the way?T

Theorem. DFS takes time (linear in input size). O(m + n)

v u

BFS():

…

3. While not empty DeQ(u)

 For each (u,v) incident to u

If Discovered[v]=0 then
Set Discovered[v]=1

Add edge (u,v) to T

EnQ(v)

s

Q

Scratch

