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Recall: master theorem

T(n) f(n) vs. n'o&:¢
O(n'°2%) f(n) = O(n1°%9=¢) for some e > 0.
O(n'°%“log n) f(n) = O(n'o29)
O(f(n)) f(n) = Qn°e9*¢) for some e > 0,
and af(n/b) < cf(n) for some ¢ < 1.




Graphs

@ A graph is a set of vertices that are pairwise connected by edges.

* Two categories: directed vs. undirected.

® Why care about graphs?
* Graphs are a very useful abstraction.

* Graphs have numerous applications.

* Alot of graph algorithms exist (and more un
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Versatile abstraction

Application Vertices Edges
Traffic Intersections Roads
Social network People Friendship
Game Board position Legal move
Financial Stock/currency Transactions
Programs Procedures Procedure call




Defining graphs

® An undirected graph G = (V, E) consists of

e V:a finite set. (Vertex/node set)
« EC{(u,v):u,veV}. (Edge set)
* NB. Self loop (u, u) not allowed.

® A directed graph G = (V, E) consists of
 V:a finite set. (Vertex/node set)

e EC{u—>v:uveV}. (Edge set)
* The set of edges need NO'I"' be symmetric.



Graph terminology

® If e = (u,v) is an edge in a graph, then v is called adjacent to u. (a.k.a neighbors)
® Edge ¢ is said to be incidenttou and v.

® Degree of a vertex d(u): the number of edges incident to the vertex u.

T
Degree d(u) = 3 Path

@ A path is a sequence of vertices that are connected by edges.

¢ Cycle

* W e Vi), St (v, v ) € Eforalli =1,...,k— 1.
® A cycle is a path whose first and last vertices are the same.
® Two vertices are connected if and only if (iff.) there is a path between them.
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Trees

® A graph is connected if every pair of vertices u & v are connected.
@ A tree is an undirected graph that is and does not contain a cycle.

® Theorem. Let G be an undirected graph on n nodes.
Any two of the following statements imply the third.

a. (G is connected.
b. G does not contain a cycle.

c. Ghasn — 1 edges.




Rooted trees

® Given a tree, choose a root node r, and orient each edge away from r.

 Models hierarchical structure.

Root
(1) Ancestor of 0

Child of 7
Sibling of g




Exploring a graph

Given: vertices s, 1 € V.

Goal: decide if there is a path from s to «.

® Breadth-first search (BFS)
* Explore children in order of distance to start node.
® Depth-first search (DFS)

» Recursively explore node’s children before exploring siblings.



Breadth-first search

® |ntuition. Explore outward from s in all possible directions.

* Adding nodes one layer at a time.

» L, = {neighbors of L}
* L; = {neighbors of L, notin Ly & L} Analogy: wave front of a ripple
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Understanding BFS

® BFS demo.
(1) (0
(2, (3)
(&)

c
O,

® Running time: linear O(| V| + | E|) [more to come]

® For each i, L, consists of all nodes at distance exactly ; from s.

® There is a path from s to 7 iff. f appears in some layer.

® Let T be aBFStreeof G = (V, E), and (u, v) an edge of G. Then the levels
of u and v differ by at most 1.

[



® |ntuition. Childen prior to siblings.

Depth-first search

! | | |
I II

DES: an impatient maze runner
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BFS: a patient maze runner



DESinaction




Understanding DFS

DFS Tree (1) Contrast with BFS Tree

® Running time: linear O(| V| + | E| ) [more to come]
® Let 'beaDFStreeof G = (V,E),and let u & v be nodes in T.

* If (u,v)isanedge of G thatis not an edge of 7.

* Then one of i or vis an ancestor of the other.
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Implementing BFS/DFS

® Generic traversal algorithm

1. R={s}
. While there is an edge (¢, v) whereu € Randv & R, add v to R.

To implement it, need to choose

® Graph representation

® Data structure to track ... These choices affect

. h f 1
* Vertices already explored. the order of traversa

» Edges to be followed next.
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Graph representation 1: adjacency matrix

® Given: G = (V,E),|V|=n,|E| =m.
® Adjacency matrixA:n X n, A, = liff. (u,v) € Eis an edge.

® Basic properties

* Lookup an edge: ©(1).

* List all neighbors: ®(n).

* Symmetric for undirected graphs.

» Space: ®(n?), good for dense graphs.
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Graph representation 1: adjacency list

® Given: G = (V,E),|V|=n,|E| =m.
® Adjacency list Adj: Vu € V,Adjlu] = {v : v adjacent to u}.

® Basic properties

* Lookup an edge: ®(degree(u)).

* Space: ®(m + n), good for sparse
graphs.
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Review: queue & stack

1. Queue: first-in first-out (FIFO) 2. stack: last-in first-out (FIFO)

k_ =

In: EnO Out: DeQ

In: Push Out: Pop

-
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BEFS implementation

Input: G = (V, E) by adjacency list Adj. Start node s.

Goal: BFS tree 1 (rooted at s).

BES(s):
// Discoverd[l,...,n] array of bits (explored or not),
initialized to all zeros.

// Queue Q < &
1. Set Discovered[s]=1

2. EnQ(s)//addsto@

3. While QO not empty DeQ(u)
For each (u,v) incident to u
I Discovered|[v]=0 then
Set Discovered|[v]=1
Add edge (u,v) to T
EnQ(v)
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BL'S running time

BFS(s):
// Discoverd[ 1,...,n] array of bits (explored or not),
initialized to all zeros.

// Queue Q < &

1. Set Discovered[s] =1 0(1), run once for all
2. EnQ(s)//addsto@ —
3. While O not empty DeQ(w) O(1), run once per vertex
For each (u,v) incident tou  —
I Discovered|[v]=0 then 0(1), run S thce per edge

Set Discovered|[v]=1
Add edge (u,v) to T
EnQ(v) _

Theorem. BFS takes O(m + n) time (linear in input size).
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DFS implementation

Push Pop

BFS(S):

// Discoverd[1,...,n] array of bits (explored or not), w K o — ‘

initialized to all zeros.

// Stack S « & o BFS(s):

1. Set Discovered[s] =1 —

2. Push(s)//addstoS _ 3. While () not empty DeQ(u)

3.| While S not empty Pop(u) . For each (u,v) incident to u
If Discovered[v]=0 then I Discovered|[v]=0 then

. B B o Set Discovered[v]=1

Set Discovered[u]=1 Add edge (uv) to T
For each (u, v) incident to u EnQ(v)

Push(v)

Theorem. DFS takes O(m + n) time (linear in input size).

® Exercise. How to build DFS tree 1 along the way?
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Scratch



