

W'21 CS 584/684 Algorithm Design & Analysis

Fang Song

Lecture 4

- Graphs
- Graph traversal
 BFS
 - DFS

Credit: based on slides by A. Smith & K. Wayne

9

Recall: master theorem

	T(n)	
1	$\Theta(n^{\log_b a})$	f(n)
2	$\Theta(n^{\log_b a} \log n)$	
3	$\Theta(f(n))$	<i>f</i> (<i>n</i>) = and

$$f(n)$$
 VS. $n^{\log_b a}$

$$= O(n^{(\log_b a) - \epsilon})$$
 for some $\epsilon > 0$.

$$f(n) = O(n^{\log_b a})$$

$$= \Omega(n^{(\log_b a) + \epsilon}) \text{ for some } \epsilon > 0,$$

$$af(n/b) \le cf(n) \text{ for some } c < 1.$$

- A graph is a set of vertices that are pairwise connected by edges.
 - Two categories: directed vs. undirected.
- Why care about graphs?
 - Graphs are a very useful abstraction.
 - Graphs have numerous applications.
 - A lot of graph algorithms exist (and more under way).

Graphs

Versatile abstraction

Application	Vertices	Edges
Traffic	Intersections	Roads
Social network	People	Friendship
Game	Board position	Legal move
Financial	Stock/currency	Transactions
Programs	Procedures	Procedure call

Defining graphs

- An undirected graph G = (V, E) consists of
 - V: a finite set. (Vertex/node set)
 - $E \subseteq \{(u, v) : u, v \in V\}$. (Edge set)
 - NB. Self loop (u, u) not allowed.
- A directed graph G = (V, E) consists of
 - V: a finite set. (Vertex/node set)
 - $E \subseteq \{u \to v : u, v \in V\}$. (Edge set)
 - The set of edges need NOT be symmetric.

Graph terminology

- If e = (u, v) is an edge in a graph, then v is called adjacent to u. (a.k.a neighbors)
- Edge e is said to be incident to u and v.
- Degree of a vertex d(u): the number of edges incident to the vertex u.

- A path is a sequence of vertices that are connected by edges.
 - $\{v_1, ..., v_k\}$, s.t. $(v_i, v_{i+1}) \in E$ for all
- A cycle is a path whose first and last vertices are the same.
- Two vertices are connected if and only if (iff.) there is a path between them.

$$i = 1, ..., k - 1.$$

- A graph is connected if every pair of vertices u & v are connected. A tree is an undirected graph that is connected and does not contain a cycle.
- \bullet Theorem. Let G be an undirected graph on n nodes. Any two of the following statements imply the third.
 - a. G is connected.
 - b. G does not contain a cycle.
 - c. G has n 1 edges.

Trees

Rooted trees

- Given a tree, choose a root node r, and orient each edge away from r.
 - Models hierarchical structure.

Exploring a graph

Given: vertices $s, t \in V$.

Goal: decide if there is a path from s to t.

Breadth-first search (BFS)

- Explore children in order of distance to start node.
- Depth-first search (DFS)
 - Recursively explore node's children before exploring siblings.

Breadth-first search

Intuition. Explore outward from s in all possible directions.

• Adding nodes one layer at a time.

- $L_0 = \{s\}$
- $L_1 = \{ \text{neighbors of } L_0 \}$
- $L_1 = \{ \text{neighbors of } L_1 \text{ not in } L_0 \& L_1 \}$

Analogy: wave front of a ripple

Understanding BFS

- Running time: linear O(|V| + |E|) [more to come]
- For each *i*, L_i consists of all nodes at distance exactly *i* from *s*.
- There is a path from s to t iff. t appears in some layer.
- Let *T* be a BFS tree of G = (V, E), and (u, v) an edge of *G*. Then the levels of *u* and *v* differ by at most 1.

Depth-first search

Intuition. Childen prior to siblings.

DFS: an impatient maze runner

BFS: a patient maze runner

DFS in action

Understanding DFS

- Running time: linear O(|V| + |E|) [more to come]
- Let T be a DFS tree of G = (V, E), and let u & v be nodes in T.
 - If (u, v) is an edge of G that is not an edge of T.
 - Then one of *u* or *v* is an ancestor of the other.

Implementing BFS/DFS

Generic traversal algorithm

1.
$$R = \{s\}$$

2. While there is an edge (u, v) where $u \in R$ and $v \notin R$, add v to R.

To implement it, need to choose

- Graph representation
- Data structure to track ...
 - Vertices already explored.
 - Edges to be followed next.

These choices affect the order of traversal

Graph representation 1: adjacency matrix

- Given: G = (V, E), |V| = n, |E| = m.
- Adjacency matrix $A: n \times n$, $A_{uv} = 1$ iff. $(u, v) \in E$ is an edge.

- Basic properties
 - Lookup an edge: $\Theta(1)$.
 - List all neighbors: $\Theta(n)$.
 - Symmetric for undirected graphs.
 - Space: $\Theta(n^2)$, good for dense graphs.

Graph representation 1: adjacency list

- Given: G = (V, E), |V| = n, |E| = m.
- Adjacency list $Adj: \forall u \in V, Adj[u] = \{v : v \text{ adjacent to } u\}.$

Basic properties

- Lookup an edge: $\Theta(\text{degree}(u))$.
- Space: $\Theta(m + n)$, good for sparse graphs.

Review: queue & stack

1. Queue: first-in first-out (FIFO)

In: EnQ

Out: DeQ

2. stack: last-in first-out (FIFO)

BFS implementation

Input: G = (V, E) by adjacency list Adj. Start node s.

Goal: BFS tree T (rooted at s).

$\underline{\mathrm{BFS}}(S)$:

// Discoverd[1,...,n] array of bits (explored or not),
initialized to all zeros.

// Queue $Q \leftarrow \emptyset$

- 1. Set Discovered[s] = 1
- 2. EnQ(s) // add s to Q
- 3. While Q not empty DeQ(u)
 For each (u,v) incident to u
 If Discovered[v]=0 then
 Set Discovered[v]=1
 Add edge (u,v) to T
 EnQ(v)

BFS running time

BFS(s): // Discoverd[1,...,n] array of bits (explored or not), initialized to all zeros. // Queue $Q \leftarrow \emptyset$ Set Discovered [s] = 12. EnQ(s) // add s to Q3. While Q not empty DeQ(u)For each (u,v) incident to u If Discovered[v]=0 then Set Discovered[v]=1 Add edge (u,v) to T EnQ(v)

Theorem. BFS takes O(m + n) time (linear in input size).

O(1), run once for all O(1), run once per vertex

O(1), run \leq twice per edge

DFS implementation

Theorem. DFS takes O(m + n) time (linear in input size).

• Exercise. How to build DFS tree T along the way?

Scratch