@ Portland State University

W21 CS 584/684 |
Algorithm Design & | * Exponentiation
Analysis * Solving recurrences
1 * Graph basics

Lectures

| Fang Song |

Review: Divide-&-Conquer

1. Divide

* Divide the given instance of the problem into several
independent smaller instances of the same problem.

2. Delegate

» Solve smaller instances recursively, i.e., delegate each smaller
instance to the Recursion Fairy.

3. Combine

 Combine solutions of smaller instance into the final solution
for the given instance.

Lxponentiation

Given: integers a, b. b is n-bit long.

Goal:¢c = a?.

How many multiplications?

® Naive algorithm: O(b) = O(2"). 1 subproblem only

* Exponential in the input length!

® o o _Q /
Divide-&-Conquer b { b2 . b2 if b even

(Not 2 or more)

e Linear i ' | ’
LLinear in the input length! a2 B=D2 0 if b odd

I'(b) =T(b/2)+ O(1) = O(logb) = O(n)

Recurrences

® Definition: an equation or inequality that describes a function
in terms of its values on smaller inputs.

» Sloppiness: ignore floor/ceilings; 7(1) = O(1)

o(1). ifn = 1

mmmﬁnmz{nmup+ﬂmﬁb+mmaW”>1

® Recurrences we have seen.
o Merge sort: T(n) = 2T(n/2) + O(n) = O(n?)
» Karatsuba’s integer multiplication: T(n) = 3T(n/2) + O(n) ~ O(n'>°)
» Strassen’s matrix multiplication: T(n) = 7T(n/2) + O(n?) ~ O(n**°")
» Exponentiation: 7(b) = T(b/2) + O(1) = O(log b) = O(n)

A

Method #1: Recursion Tree

1. Form recursion tree to guess a solution.

. Draw the tree of recursive calls.

-Each node gets assigned the work done during that call to the procedure
(dividing and combining).

.Total work is sum of work at all nodes.

2. Prove it by induction.

Recursion tree for Mergesort

T(n) = 2T(n/2) + n Ignore floor/ceil & constant factor in merging time O(n).

G Draw tree of recursive calls

Recursion tree for Mergesort

T(n) = 2T(n/2) + n Ignore floor/ceil & constant factor in merging time O(n).

@ Assign work at each level (dividing and combining)

e Total work = sum of all nodes

® A “cookbook” for solving recurrences of the form

Method #2: Master theorem

T(n) = aT(n/b) + f(n)

ca>1,b> 1.

» fasymptotically positive: dn, > 0, s.t. f(n) > 0,Vn > n,.

® 3 typical cases depending on f(n) vs. n

log, a

1. f grows slower by a

T(n)

f(n) vs. n'os4

polynomial n® factor

1 @(nlogb a)

f(n) = O(n"°29=¢) for some e > 0.<

_

, | O(n'°&%log n)

fln) = O(n'*&)

——

2. Grow at “same” rate.

_—

O(f(n))

f(n) = Q(n'°&9%¢) for some e > 0,

and f(n/b) < cf(n) for some ¢ < 1.™~

3. f grows poly-faster +

~regularity condition.

8

Master theorem in use

T(n) f(n) vs. o8¢
I O(n'°%%) f(n) = O(n1°29=¢) for some ¢ > 0.
» | O(n'°%logn) fn) = O(n'°&9
O(f(n)) f(n) = QnUs9%¢) for some e > 0,
3 and f(n/b) < cf(n) for some ¢ < 1.

® In-class exercise: solve these by master theorem.

1.

SO NS

Merge sort: T(n) = 2T(n/2) + O(n).

Karatsuba’s integer multiplication: 7(n) = 37(n/2) + O(n).
Strassen’s matrix multiplication: T(n) = 7T(n/2) + O(n?).
Exponentiation: T(n) = T(n/2) + O(1).

T(n) = 4T(n/2) + O(n>) .

Master theorem in use

T(n) f(n) vs. n'oee¢
I O(n'ogr @) f(n) = O(n1°29=¢) for some ¢ > 0.
2 | O1'°%“log n) fn) = O(n'029)
O(f(n)) f(n) = QnUs9%¢) for some e > 0,
3 and af(n/b) < cf(n) for some ¢ < 1.

1. T(n) =2T(n/2) + O(n).[Merge sort]
e a=2,b=2n""%%=n=f(n).Case2: T(n) = O(nlogn)

2. T(n) =3T(n/2) + O(n).[Karatsuba’s integer multiplication]
o a=23,b=2n'"%%=plog3 x pl3 fin)y=n=0n'"""°fore =0.5.
e Case 1: T(n) = O(n'°&%)

10

Master theorem in use, cont'd

T(n) f(n) vs. n'oee¢
I O(n'ogr @) f(n) = O(n1°29=¢) for some ¢ > 0.
2 | O1'°%“log n) fn) = O(n'029)
O(f(n)) f(n) = QnUs9%¢) for some e > 0,
3 and af(n/b) < cf(n) for some ¢ < 1.

3. T(n) = 7T(n/2) + O(n?) . [Strassen’s matrix multiplication]
o a="7b=2n""%%=plo227 x 23 fin) =n’>=0m**'~¢) fore =0.8.
o Case1: T(n) = O(n'°2"y ~ O(n*°h).

4. T(n) =Tmn/2)+ O(1).[Exponentiation]
e a=1,b=2,n"%%=p"=1£(n) = 0(). Case2: T(n) = O(logn) .

[

Master theorem in use, cont'd

T(n) f(n) vs. n'oee¢
I O(n'°%%) f(n) = O(n1°29=¢) for some ¢ > 0.
2 | O1'°%“log n) fn) = O(n'029)
O(f(n)) f(n) = QnUs9%¢) for some e > 0,
3 and af(n/b) < cf(n) for some ¢ < 1.

5. T(n) =4T(n/2) + O(n>).
e a=4b=2n"2%=n’fn) =n=Qn**% fore = 1.
e Check regularity condition: af(n/b) = 4(n/2)> < cn’forc = 0.5 < 1.
e Case 3: T(n) = O(n°).

12

Master theorem doesn’t solve it all

T(n) f(n) vs. n'oee¢
I O(n'°%%) f(n) = O(n1°29=¢) for some ¢ > 0.
2 | O1'°%“log n) fn) = O(n'029)
O(f(n)) f(n) = QnUs9%¢) for some e > 0,
3 and f(n/b) < cf(n) for some ¢ < 1.

* Solve T(n) = 4T(n/2) + n*/logn .
e a=4,b=2n'""%%=n? f(n) =n’*/logn.
* Master theorem doesn’t apply! For any constant € > 0,n° = w(logn).

® Generalization exists.

* E.g. Akra-Bazzi method https:/en.wikipedia.org/wiki/Akra%E2%80%93Bazzi_method

13

Master theorem: proof idea

14

Graph basics

Scratch

