@ Portland State University

--

W21 CS 584/684 Lecture 20

« Approx./R. algorithms
* Review

Algorithm Design &
5 Analysis ’

__

--

__

Randomized quicksort

= Pick the pivot

Rand-QuickSort(A):
if (array A has zero or one element)
Return
Pick pivotp € A4
(L, M,R) « PARTITION — 3 — WAY(4,p) — ~ 0(n)

Rand-QuickSort(L) — T(1)
Rand-QuickSort(R) —— T(n—i—1)
Theorem. The number of compares to quicksort an array

of n distinct elements is O().

Contention resolution in a distributed system

Given: processes Py, ..., B,
* each process competes for access to a shared database.
* If = 2 processes access the database simultaneously, all processes are locked out.

Goal: a protocol so all processes get through on a regular basis

= Restriction: Processes can't communicate.

Contention resolution: randomized protocol

Protocol. Each process requests access to the database in round
t with probability p = 1/n.

Theorem. All processes will succeed in accessing the database at
least once within O(n Inn) rounds except with probability < %

Randomized contention resolution: analysis 1

Def. S[i, t] = event that process i succeeds in accessing the
database in round t.

: 1 . 1
= Claim1. —= Pr(S[i, t]) < -~

= Pf. Pr(S[i, t]) = p(1 — p)n—l [Geometric distribution:

/ \independent Bernoulli trials]

Process i requests access None of remaining request access

= Pr(S[i, t]) = % 1-1/n)"1e [é,%] [p =1/n]

* (1-1/n)" converges monotonically from 1/4 up to 1/e.
* (1-1/n)""! converges monotonically from 1/2 down to 1/e..

4

Randomized contention resolution: analysis 2

= Claim2. The probability that process i fails to access the database
in e - n rounds is at most 1/e. After e - n (¢ Inn) rounds, the
probability < n™°.

= Pf. Let F[i, t] = event that process i fails to access database in
rounds 1 through t.
t

Pr(F[i,t]) = Pr(S[;,1]) - .- Pr(S[5,¢]) < (1 - %) lIndependence & Claim 1]

1 en
e Choose :Pr(Fli, t]) < (1 - —) <

en o

1 clnn
e Choose :Pr(Fli, t]) < (;) <

Randomized contention resolution: analysis 3

Theorem. All processes will succeed in accessing the database at

least once within rounds except with probability
= Pf. Let F[t] = event that process fails to access database in
rounds 1 through t. Union Bound

Let E, F be two events. Then
Pr(E UF) < Pr(E) + Pr(F).

. Pr(F[i,t]) < n-Pr(F|1,t])
i=1

Integer linear programming (ILP)

Input. Graph ¢ = (V,E)

* Vertex cover S € V:subset of vertices that touches all edges

Goal. Find a vertex cover S of minimum size
= Formulating vertex cover as an integral linear program

For each i € V, introduce x; € {0,1} [i.e., Pick i in vertex cover iff. x; = 1]
Min Z?:l X
Subject to:

x;+x; =1 foreach (i,j) EE

® We don’t know (expect) a poly-time algorithm (ILP)
* Without integrality (LP), we do know poly-time algorithms

Putting aside the integral constraint

(ILP IT) Min }.}*, x; (LP X) Min)/-; x;
Subject to: Subject to:
Xi+Xj21, V(i,j)EE ‘ Xi+Xj21, V(i,j)EE
xiE{O,l}, VieV OSXLSL VieV
(.1 ! Let x* be an optimal soln. for LP X
x; = |xf] =+ 1, ifx; = > @ & optimal value OPT = Y; x}
0, otherwise

* (Threshold) Rounding:

. . S . - 1 1
i. {x;}is afeasible integral solution:V(i,j) € E, x; > > or X; = > or both

i, Y.ox; <Y;2-xf =2-0PT < 2-O0PTyy, [optimal value of ILP II,
i.e. size of min vertex cover]

LP relaxation

1. Valid? 2. Good?

Solve in \

Optimization Relax — Fractional poly-time Round %
Problem * relaxation "Xt " inte ger
ILP LP
_ Dual Primal
LP Dual feasible Mo | Mic Primal feasible
ILP Integral Dual Integral Primal .
Integral feasible Max Min Integral feasible

»

&
< ¢ >

Integrality gap
(the smaller the better)

Hardness of approximation

1.36 - OPT 2-O0OPT

® NP—hardl | © LP relax / matching
OPT . I I g

(Min Vertex cover) ® NP—hard

(under UGC)

Theorem. It is NP-Hard to approximate Vertex Cover to with any
factor below 1.36067.

[i.e., otherwise, you can solve 3-SAT in poly-time]

Theorem’. It is NP-Hard to approximate Vertex Cover to with any
factor below 2, assuming the unique games conjecture (UGC).

Want to read more!
https://cs.nyu.edu/~khot/papers/UGCSurvey.pdf

https://cs.stanford.edu/people/trevisan/pubs/inapprox.pdf
10

https://cs.nyu.edu/~khot/papers/UGCSurvey.pdf

Approximating set cover

Input. Set U of n elements, S, ..., S,, of subsets of U
Goal. Find 1 € {1, ..., m} of size such that

(ILP II for Set cover)

Foreachi € {1, ..., m}, introduce x; € {0,1}
Subject to:

2 .'X,'l'Zl, YueU

11

LP relaxation for set cover

(Set cover ILP I) (Set cover)
Min 2:11 X ‘ Min 2:11 X
Subject to: Subject to:
z Xl'Zl, YueU z x; =1, YueU
L:UES; [:UES;
x; € {0,1}, Vi € {1, .., m} 0<x;<1,Vie{l,.. m}
§ Let x* be an optimal soln. for LP X
? x=] Ao & optimal value OPT =); x;
* Threshold rounding: does it cover all elements?
e Ex.u € Sl' ...,5100; XI, ...xikOO — Flo = X1 = "= X100 = 0. u is missed!

» Randomized rounding!

12

LP relaxation for set cover

(Set cover ILP IT) Min Y% x; (Set cover LP X) Min Y./, x;
Subject to: - Subject to:
Dies, xi=1, VuelU Yiues X =1, VUEU
x; € {0,1}, Vi e {1,...,m} 0<x;<1,Vie{l,.. m}
® x; = |x]] @m Let x” bean optimal soln.for LP X

& optimal value OPT =); x;
= Randomized rounding: set x; = 1 with probability x;

E[X %] = 22, Elx] =270 %

= But is it fea5|b|e? [Further analysis on Panigrahi’s notes]

Theorem. There is a poly-time randomized algorithm achieving O (log n)
expected approximation ratio, except w. probability 0(1/n).

13

You've accomplished a lot!

Be proud of yourselves!

14

Final exam

* When
* Take-home. Release on Tuesday (03/16)at 4pm, due on Wednesday(03/17) at 4pm.
* | will be online (slack) during 5:30 — 7:20pm to answer clarification questions.

» What

« Comprehensive, slightly more focused on 2" half.

= How

* Similar format as mid-term: short-answer questions and algorithm designs.
* No external resource permitted.Violations will be taken seriously.
* No credit for unintelligible hand writing.

15

"o

Principal questions

What problem to solve?

be as precise as possible

s the algorithm correct?

How much resource it costs?

(time, space, ...)

Can we do better?

DESIGN

ANALYSIS

16

Major topics

= Basics: asymptotic, graphs (BFS/DFS), data structures <

» Algorithmic techniques
|. Divide-&-Conquer
2. Dynamic Programming
3. Greedy
4. Network flow & linear programming
5. Randomization 2nd half
* Reduction

= Computational intractability: P, NP, NPC, approximation<

1st half

P71

17

1. Divide-&-Conquer

" |dea
* Divide into independent subproblems — recurse - combine

= Examples
* Merge sort O(nlogn)
* Fast multiplication 0 (n1°%) [Karatsuba60]; O(nlogn) [HarveyHoeven|9]
* Matrix multiplication 0 (n?81) [strassen69]; O (n%378) [CoppersmithWinograd90];
* Exponentiation O(nlogn)
* Quick sort 0(n?) worst-case; Expected 0(nlogn) random pivoting

= Analysis.

* Solving recurrence:T(n) = aT(n/b) + f(n)
 Recursion tree & Master theorem

18

2. Dynamic programming

" |dea

* Divide into subproblems — recurse by

* Usually bottom-up iteration (topological order of implicit DAG)
= Examples

* Fibonacci

* Longest increasing subsequence

* Weighted interval scheduling

* Matrix-chain multiplication

* Longest common subsequence (aka Edit Distance)
* Shortest path (w. negative lengths)

O(mn) |

O(n)
0(n?)

O (nlogn)
0(n3)

0 (mn)

19

3. Greedy

" |dea
* Special case of DP: when lucky, lazy choice works

= Examples
* Shortest path (w. non-negative lengths) O((m+n)logn) |]
* Interval scheduling (weight = 1) O(nlogn)
* Interval partitioning O(nlogn)
* Minimum spanning tree O(mlogn) []; 0((m + n) logn) |]

0 credit in exam without correctness proofs

Detour

* data structures [Prioirity Queue, Union Find]
- analysis

20

4. Network flow - Linear programming

Network flow < Linear programming

= Analytical * Analytical
* Max-Flow = Min-Cut * Duality: OPT(Primal) = OPT(Dual)
= Algorithms = Algorithms
* Augmenting path: O (mnC) * Simplex [efficient in practice/ but not
[Ford-Fulkerson] poly-time worst-case]
e Capacity scaling: 0(m?log () * Ellipsoid [poly-time but not practical]
* In exam: quote O (mn) * Interior point [poly-time & practical]
= Applications = Warning: don't reduce to LP
* Bipartite perfect matching unless stated explicitly

21

5. Randomization

" |dea
* Make random choices to get correct answers with high probability in (expected)
poly-time.
= Examples
* Contention resolution
* Randomized quicksort
* Randomized rounding for LP relaxation

" Important probabilistic tools
* Union bound
* Linearity of expectation

22

Computational intractability

= Classity problems by “hardness”
* P:feasible problems (solvable in poly-time). P vs. NP?
* NP: 3 poly-time certifier verifying a solution.

» Reduction: relating hardness (A < B= A no harder than B)
* Cook reduction [aka poly-time reduction]
* Karp reduction [aka poly-time transformation]

* NP-complete: 1) A e NP & 2) VB € NP, B <y,,, p A [NP—hard]
* Circuit—SAT is NPC

* Circuit—SAT < 3—SAT < INDEPENDENT—-SET < VERTEX—COVER <
SET—COVER < IntegerLP

* 3—SAT < HAM—-CYCLE

23

Coping with NPC: approximation algorithms

* Greedy

* Vertex cover & set cover

= | P relaxation
rounding: 2-approx. vertex cover
rounding: O (log n)-approx. set cover

* Know the facts and ideas! Details less important

24

FAQs

= How should I study for it?

* Review the fundamentals
* Reproduce the algorithms & analysis for all problems you’ve seen (lecs, text, hw...)

» Reminders
* If no running time requirement, always aim for fastest algorithms you can think of.

* Asked or not, always provided analysis (correctness and runtime) on algorithm design
problems.

* Always start with a short description of the main idea of your algorithm.
* Reductions: mind the direction (e.g.,in NPC proofs).
* A guideline on grading rubrics will be posted.

= Questions?

25

