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Establishing NP-Completeness

Once we establish first "natural" NP-complete problem, others fall 
like dominoes … 
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Recipe to establish NP-Completeness of problem 𝑌
1. Show that 𝑌 ∈ 𝐍𝐏
2. Choose an NP−complete problem 𝑋
3. Prove that 𝑋 ≤!,#$%& 𝑌

Justification. If 𝑋 is an NP-complete problem, and 𝑌 is a problem 
in 𝐍𝐏 with the property that 𝑋 ≤!,#$%& 𝑌 then 𝑌 is NP-complete (by 
transitivity)



𝐶' 𝐶(

(DIR−)HAM−CYCLE is NP-Complete

(DIR−)HAM−CYCLE. Given a directed graph 𝐺 = (𝑉, 𝐸), does there 
exist a directed cycle Γ that visits every node exactly once? 
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Theorem. 3−SAT ≤! (DIR−)HAM−CYCLE
Pf. Given 3−SAT instance Φ in CNF: 𝑛 variables 𝑥' and 𝑘 clauses 𝐶(

𝑥)

……

𝐶( contains 𝑥) 𝐶(

𝐶(

𝐶( contains 𝑥)
𝐶(

Intuition: traverse row 𝑖 from left to right ⇔ set variable 𝑥) = true



3−SAT ≤! (DIR−)HAM−CYCLE
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𝑠𝑥'

𝑥+

𝐶' = 𝑥' ∨ 𝑥+ ∨ 𝑥,

𝑡

𝑥,

𝐶+ = 𝑥' ∨ 𝑥+ ∨ 𝑥,

Claim. Φ is satisfiable iff. 𝐺 has a Hamiltonian cycle 



3−SAT ≤! (DIR−)HAM−CYCLE
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Claim. Φ is satisfiable iff. 𝐺 has a Hamiltonian cycle 

(⇒) Suppose Φ has a satisfying assign. 𝒙∗. Define an H-Cycle in 𝐺:
• if 𝑥)∗ = true, traverse row 𝑥) from left to right 
• if 𝑥)∗ = false, traverse row 𝑥) from right to left
• For each clause 𝐶( pick (only) one row 𝑖 and take a detour

(⇐) Suppose 𝐺 has a H-Cycle Γ. Define a satisfying assign. in Φ:
• In Γ, replace edges going/leaving 𝐶( with the edge of the corresponding two nodes

in some row. This gives a new cycle Γ′ in 𝐺 − {𝐶', 𝐶+, … , 𝐶.}
• In Γ′, set 𝑥) = true if Γ′ traverses row 𝑖 left-to-right; set 𝑥) = false otherwise.

𝐶(

╳

𝐶(╳
╳



Hard computational problems cont’d

• Aerospace engineering: optimal mesh partitioning for finite elements. 
• Chemical engineering: heat exchanger network synthesis
• Civil engineering: equilibrium of urban traffic flow
• Electrical engineering: VLSI layout. 
• Mechanical engineering: structure of turbulence in sheared flows
• Biology: protein folding
• Physics: partition function of 3-D Ising model in statistical mechanics.
• Economics: computation of arbitrage in financial markets with friction
• Financial engineering: find minimum risk portfolio of given return
• Politics: Shapley-Shubik voting power
• Pop culture: Sudoku (http://www-imai.is.s.u-tokyo.ac.jp/~yato/data2/SIGAL87-2.pdf)
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http://www-imai.is.s.u-tokyo.ac.jp/~yato/data2/SIGAL87-2.pdf
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Want to learn more?

Computers and Intractability: A Guide 
to the Theory of NP-Completeness.
Michael Garey and David S. Johnson

Computational 
Complexity: A 
Modern Approach
Sanjeev 
Arora & Boaz Barak

Complexity Zoo
There are now 544 
classes and counting!

𝐍𝐏

𝐏

𝐍𝐏𝐂

𝐏𝐒𝐏𝐀𝐂𝐄

𝐄𝐗𝐏

https://en.wikipedia.org/wiki/Michael_Garey
https://en.wikipedia.org/wiki/David_S._Johnson
http://www.cs.princeton.edu/~arora/
http://www.boazbarak.org/
https://complexityzoo.uwaterloo.ca/Complexity_Zoo
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Coping with NP-Completeness

https://i.stack.imgur.com/EkpIV.jpg

§Better (constructive) answers: 
sacrifice one of three desired features

1. Solve arbitrary instances
2. Solve problems in poly-time
3. Solve problems to optimality

§ Techniques
• Identifying structured special cases
• Local search heuristics (e.g., gradient descent)
• Approximation algorithms



Finding near-optimal vertex cover

Input. Graph 𝐺 = (𝑉, 𝐸)
• Vertex cover 𝑆 ⊆ 𝑉: subset of vertices that touches all edges

Goal. Find a vertex cover 𝑆 of minimum size
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§ First attempt: greedily pick the vertex that covers most edges
APP-VC: on input 𝐺 = 𝑉, 𝐸
For 𝑣 ∈ 𝑉 (in descending order of degrees)

Add 𝑣 in	S	
Delete 𝑣 and its neighbors from 𝐺

§Claim. Suppose the minimum vertex cover has size OPT. Then the 
output of APP-VC has size at most O(log 𝑛 ⋅ OPT)

§ Pf. Exercise



2-approximation vertex cover
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§ 2nd attempt: find a MAX matching
2-APP-VC: on input 𝐺 = 𝑉, 𝐸
Find a maximal matching 𝑀 ⊆ 𝐸
Return 𝑆 = {all end points of edges in 𝑀}

§Claim. The output of 2-APP-VC has size at most 2 ⋅ OPT
§ Pf. 𝑆 = 2 𝑀 ≤ 2 ⋅ OPT. Why does 𝑆 have to be a vertex cover?
• Exercise. Is this tight, i.e., 2-APP-VC’s output = 2 ⋅ OPT on some graph?

Recall: 𝑀 ⊆ 𝐸 is a matching in 𝐺 = (𝑉, 𝐸) if each node appears in at 
most one edge in 𝑀.
Observation: For any matching 𝑀 and any vertex cover 𝑆, 𝑀 ≤
|𝑆|. In particular, 𝑀 ≤ OPT (size of min vertex cover). 
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Scarce computational resources, 
which to invest on?

www.nvidia.comwww.flickr.com www.computerhope.com
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How about … coins? 

Theorem. Randomness is useful
§ Randomization. Allow fair coin flip in unit time



Power of randomness: primality testing

§Naive method: 𝑂(𝑛)
§ Randomized algorithm: Miller-Rabin 1977 𝑂 log+ 𝑛
§Deterministic algorithm: AKS 2002 𝑂 log,- 𝑛
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Is integer 𝑛 Prime?

20,988,936,657,440,586,486,151,264,256,610,222,593,863,921

Miller-Rabin is still the way to go in practice!



Power of randomness: perfect matching

§Deterministic algorithm: 𝑂 𝑛𝑚
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𝑚: # edges
𝑛: # nodes

§ Randomized algorithm: 𝑂 log. 𝑛𝑚
Exponentially faster!



Power of randomness beyond algorithm design
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CryptographyProbabilistic constructions

Nice error-correction codes exist: 
random codes



Probability 101
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§ (Discrete) Sample space Ω = {𝜔}
• set of all possible outcomes of a random experiment
• Event 𝐸 ⊆ Ω: a subset of the sample space

§Axioms of probability: a probability distribution is a mapping 
from events to real numbers Pr ⋅ : 𝒫 Ω → [0,1], satisfying
• Probability of an event Pr 𝐸 ≥ 0 for any event 𝐸
• Pr Ω = 1
• Pr 𝐸 ∪ 𝐹 = Pr 𝐸 + Pr(𝐹) if 𝐸 ∩ 𝐹 = ∅ (mutually exclusive)

§ Ex. Roll a fair dice
• Ω = {1,2,3,4,5,6}, Pr 𝜔 = '

/ , 𝜔 = 1,… , 6.
• 𝐸 = 1,3,5 dice being odd, & Pr 𝐸 = 1/2

N.B. n𝐸 ≔ Ω\𝐸 complement event
Pr n𝐸 = 1 − Pr(𝐸)



Probability 101 cont’d
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§Conditional probability: Pr 𝐵 𝐴 ≔ /0 1∩3
/0 1

, assuming Pr 𝐴 > 0.

i.e. Pr 𝐴 ∩ 𝐵 = Pr 𝐴 ⋅ Pr(𝐵)

Bayes’ theorem
Let 𝐸, 𝐹 be two events and Pr 𝐹 > 0. 

Then Pr 𝐸|𝐹 = Pr 𝐹 𝐸 ⋅ /0(5)
/0 7

.

§ Independence: Events 𝐴, 𝐵 are independent iff. Pr 𝐵 𝐴 = Pr 𝐵 .



Probability 101 cont’d
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§ Random variable 𝑋:Ω → ℕ
• Assign each outcome a number
• “𝑋 = 𝑥” is the event 𝐸 ≔ {𝜔 ∈ Ω: 𝑋 𝜔 = 𝑥}
• Independent random variables:

§ Ex. Ω = roll 4 dices independently 
• Let 𝑋 be the sum of 4 rolls; 𝑋) be value of 𝑖th roll, 𝑖 = 1,… , 4

§ Expectation: a weighed average
• 𝔼[𝑋] = ∑0∈2 Pr 𝑋 = 𝑧 ⋅ 𝑧
• Linearity: 𝔼 𝑋 + 𝑌 = 𝔼 𝑋 + 𝔼[𝑌] (independence NOT needed)

• 𝔼 𝑋 = 𝔼 𝑋' +⋯+ 𝑋3 = 4 ⋅ 𝔼 𝑋' = 4×3.5 = 14

𝑋, 𝑌 are indep. iff. for all possible 𝑥 and 𝑦, events 𝑋 = 𝑥 and 𝑌 = 𝑦 are indep.



Recall: quick sort
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§Main Idea
• Divide array into two halves. 
• Recursively sort each half. 
• Merge two halves to make sorted whole.

with condition: 𝐿 ≤ 𝑝𝑖𝑣𝑜𝑡 ≤ 𝑅

trivially

§Analysis
• Correctness 
• Running time*

𝑇 𝑛 = 2𝑇 𝑛/2 + 𝑂 𝑛
Cost in divide, not merge
* best-case partition

§Can you think of a worst-case scenario?



Randomized quicksort
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§ Pick the pivot randomly
Rand-QuickSort(A):
if (array A has zero or one element) 

Return
Pick pivot 𝑝 ∈ 𝐴 uniformly at random
𝐿,𝑀, 𝑅 ← PARTITION − 3 −WAY 𝐴, 𝑝

Rand-QuickSort(L)
Rand-QuickSort(R)

𝑂(𝑛)
𝑇(𝑖)
𝑇(𝑛 − 𝑖 − 1)

Theorem. The expected number of compares to quicksort an array 
of 𝑛 distinct elements is 𝑂(𝑛log 𝑛).



Randomized quicksort: analysis
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Theorem. The expected number of compares to quicksort an array 
of 𝑛 distinct elements is 𝑂(𝑛 log 𝑛).

Assume 𝐴 = 𝑧', 𝑧+, … , 𝑧4 , 𝑧' < 𝑧+ < ⋯ < 𝑧4

§How many comparisons? 𝑋 ≔ total number of comparisons 

• Indicator variable: 𝑋'( ≔ h
1, if 𝑧' is compared to 𝑧(

0, otherwise

Observation: any pair 𝑧' & 𝑧( (𝑖 < 𝑗) is compared at most once 

⇒ 𝔼 𝑋 = 𝔼 ∑'8,9:,∑(8';,9 𝑋'(
= ∑'8,9:,∑(8';,9 𝔼[𝑋'(] = ∑'8,9:,∑(8';,9 Pr[𝑋'( = 1]

Linearity



Randomized quicksort: analysis cont’d
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Theorem. The expected number of compares to quicksort an array 
of 𝑛 distinct elements is 𝑂(𝑛 log 𝑛).

𝔼 𝑋 = ∑'8,9:,∑(8';,9 Pr[𝑋'( = 1] 𝑋)( ≔ �
1, if 𝑧) is compared to 𝑧(

0, otherwise

§When two items are compared?

12 3 4 56
7

89 10

No comparison across these two groups

§Observation: 𝑧' & 𝑧( compared iff. 𝑧' or 𝑧( was the first chosen as
a pivot from 𝑍'( = {𝑧' , 𝑧';,, … , 𝑧(}



𝔼 𝑋 = ∑)5'46'∑(5)7'4 +
(6)7' = ∑)5'46'∑.5'46) +

.7' ≤2 ⋅ ∑)5'
46'∑.5'4 '

. = 𝑂 𝑛 ⋅ log 𝑛

Randomized quicksort: analysis cont’d
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§Observation: 𝑧' & 𝑧( compared iff. 𝑧' or 𝑧( was the first chosen as
a pivot from 𝑍'( = {𝑧' , 𝑧';,, … , 𝑧(}

Pr[𝑋)( = 1]
= Pr[𝑧) & 𝑧( compared] = Pr[𝑧) or 𝑧( is 1st pivot chosen from 𝑍)(]
= Pr[𝑧) is 1st pivot from 𝑍)(] + Pr[𝑧( is 1st pivot from 𝑍)(]

=
1

𝑗 − 𝑖 + 1
+

1
𝑗 − 𝑖 + 1

=
2

𝑗 − 𝑖 + 1

Harmonic series



Contention resolution in a distributed system
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Given: processes 𝑃,, … , 𝑃9, 
• each process competes for access to a shared database. 
• If ≥ 2 processes access the database simultaneously, all processes are locked out. 

Goal: a protocol so all processes get through on a regular basis

§ Restriction: Processes can’t communicate. 

D

𝑃'
𝑃+
⋮
𝑃4



Contention resolution: randomized protocol
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Protocol. Each process requests access to the database in round 
𝑡 with probability 𝑝 = 1/𝑛. 

Theorem. All processes will succeed in accessing the database at 
least once within O(𝑛 ln 𝑛) rounds except with probability ≤ ,

9
. 

D

𝑃'
𝑃+
⋮
𝑃4



Randomized contention resolution: analysis 1
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Def. 𝑆[𝑖, 𝑡] = event that process 𝑖 succeeds in accessing the 
database in round 𝑡. 

§Claim1. ,
<⋅9

≤ Pr 𝑆 𝑖, 𝑡 ≤ ,
-9

§ Pf. Pr 𝑆 𝑖, 𝑡 = 𝑝 1 − 𝑝 9:, [Geometric distribution: 
independent Bernoulli trials]

Process 𝑖 requests access None of remaining request access

• 1 – 1/𝑛 4 converges monotonically from 1/4 up to 1/𝑒.
• 1 – 1/𝑛 46' converges monotonically from 1/2 down to 1/𝑒 .

⇒ Pr 𝑆 𝑖, 𝑡 =
1
𝑛
1 − 1/𝑛 46' ∈ [

1
𝑒𝑛
,
1
2𝑛
] [𝑝 = 1/𝑛]



Randomized contention resolution: analysis 2
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§Claim2. The probability that process 𝑖 fails to access the database 
in 𝑒 ⋅ 𝑛 rounds is at most 1/𝑒. After 𝑒 ⋅ 𝑛 (𝑐 ln 𝑛) rounds, the 
probability ≤ 𝑛:. .

§ Pf. Let 𝐹[𝑖, 𝑡] = event that process 𝑖 fails to access database in 
rounds 1 through 𝑡. 

Pr 𝐹 𝑖, 𝑡 = Pr 𝑆 𝑖, 1 ⋅ … ⋅ Pr 𝑆 𝑖, 𝑡 ≤ 1 −
1
𝑒𝑛

8

[Independence & Claim 1]

• Choose 𝑡 = 𝑒𝑛: Pr 𝐹 𝑖, 𝑡 ≤ 1 − '
94

94
≤ '

9

• Choose 𝑡 = 𝑒𝑛 ⋅ 𝑐ln𝑛: Pr 𝐹 𝑖, 𝑡 ≤ '
9

:;<4
≤ 𝑛6:



Randomized contention resolution: analysis 3
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§ Pf. Let 𝐹[𝑡] = event that some process fails to access database in 
rounds 1 through 𝑡. 

Pr 𝐹 𝑡 = Pr ⋃)5'4 𝐹 𝑖, 𝑡 ≤�
)5'

4
Pr 𝐹 𝑖, 𝑡 ≤ 𝑛 ⋅ Pr 𝐹 1, 𝑡

• Choose 𝑡 = 𝑒𝑛 ⋅ 2ln𝑛: Pr 𝐹 𝑡 ≤ 𝑛 ⋅ 𝑛6+ = 1/𝑛

Theorem. All processes will succeed in accessing the database at 
least once within 2e𝑛 ln 𝑛 rounds except with probability ≤ ,

9
. 

Union Bound
Let 𝐸, 𝐹 be two events. Then 
Pr 𝐸 ∪ 𝐹 ≤ Pr 𝐸 + Pr(𝐹).



Integer linear programming (ILP)
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For each 𝑖 ∈ 𝑉, introduce 𝑥) ∈ {0,1}
Min  ∑)5'4 𝑥)
Subject to:

𝑥) + 𝑥( ≥ 1 for each 𝑖, 𝑗 ∈ 𝐸

§ Formulating vertex cover as an integral linear program

Input. Graph 𝐺 = (𝑉, 𝐸)
• Vertex cover 𝑆 ⊆ 𝑉: subset of vertices that touches all edges

Goal. Find a vertex cover 𝑆 of minimum size

[i.e., Pick 𝑖 in vertex cover iff. 𝑥) = 1]

L We don’t know (expect) a poly-time algorithm (ILP)
• Without integrality (LP), we do know poly-time algorithms



Putting aside the integral constraint
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§ (Threshold) Rounding: 

(ILP Π) Min ∑)5'4 𝑥)
Subject to:

𝑥) + 𝑥( ≥ 1, ∀ 𝑖, 𝑗 ∈ 𝐸
𝑥) ∈ {0,1}, ∀𝑖 ∈ 𝑉

(LP Σ) Min ∑)5'4 𝑥)
Subject to:

𝑥) + 𝑥( ≥ 1, ∀ 𝑖, 𝑗 ∈ 𝐸
0 ≤ 𝑥) ≤ 1, ∀𝑖 ∈ 𝑉

Let 𝑥∗ be an optimal soln. for LP Σ
& optimal value OPT = ∑) 𝑥)∗

?
𝑥) ≔ ⌊𝑥)∗⌉ = � 1, if 𝑥)∗ ≥

1
2

0, otherwise

i. {𝑥)} is a feasible integral solution: ∀ 𝑖, 𝑗 ∈ 𝐸, 𝑥)∗ ≥
'
+ or 𝑥(∗ ≥

'
+ or both

ii. ∑) 𝑥) ≤ ∑) 2 ⋅ 𝑥)∗ = 2 ⋅ OPT ≤ 2 ⋅ OPT=<> [optimal value of ILP Π, 
i.e. size of min vertex cover] 



LP relaxation
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Optimization 
Problem

ILP

Fractional 
relaxation

LP

Relax
𝑥∗

Solve in 
poly-time �𝑥

integer

Round

Dual feasible Primal 
Min

Dual 
Max Primal feasibleLP

Integral feasible
Integral Primal 

Min
Integral Dual 

Max Integral feasibleILP

Integrality gap 
(the smaller the better)

1. Valid? 2. Good?



Hardness of approximation

Theorem. It is NP-Hard to approximate Vertex Cover to with any 
factor below 1.36067. 
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[i.e., otherwise, you can solve 3-SAT in poly-time] 

OPT 
(Min Vertex cover)

2 ⋅ OPT

J LP relax / matching

Theorem’. It is NP-Hard to approximate Vertex Cover to with any 
factor below 2, assuming the unique games conjecture (UGC). 

Want to read more?
https://cs.nyu.edu/~khot/papers/UGCSurvey.pdf

https://cs.stanford.edu/people/trevisan/pubs/inapprox.pdf

1.36 ⋅ OPT
L NP−hard

L NP−hard
(under UGC)

https://cs.nyu.edu/~khot/papers/UGCSurvey.pdf


Approximating set cover
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Input. Set 𝑈 of 𝑛 elements, 𝑆,, … , 𝑆> of subsets of 𝑈
Goal. Find 𝐼 ⊆ {1, … ,𝑚} of minimum size such that ⋃'∈@ 𝑆' = 𝑈

(ILP Π for Set cover) 

For each 𝑖 ∈ {1,… ,𝑚}, introduce 𝑥) ∈ {0,1}
Min ∑)5'? 𝑥)
Subject to:

�
):A∈B!

𝑥) ≥ 1, ∀𝑢 ∈ 𝑈



LP relaxation for set cover
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(Set cover ILP Π) 
Min ∑)5'? 𝑥)
Subject to:

�
):A∈B!

𝑥) ≥ 1, ∀𝑢 ∈ 𝑈

𝑥) ∈ 0,1 , ∀𝑖 ∈ {1,… ,𝑚}

(Set cover Σ) 
Min ∑)5'? 𝑥)
Subject to:

�
):A∈B!

𝑥) ≥ 1, ∀𝑢 ∈ 𝑈

0 ≤ 𝑥) ≤ 1, ∀𝑖 ∈ {1,… ,𝑚}

Let 𝑥∗ be an optimal soln. for LP Σ
& optimal value OPT = ∑) 𝑥)∗? 𝑥) ≔ ⌊𝑥)∗⌉

§ Threshold rounding: does it cover all elements?
• Ex. 𝑢 ∈ 𝑆', … , 𝑆'CC; 𝑥'∗, … 𝑥'CC∗ = '

'CC
⇒ 𝑥' = ⋯ = 𝑥'CC = 0. 𝑢 is missed!

§ Randomized rounding! 



LP relaxation for set cover
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(Set cover ILP Π) Min ∑)5'? 𝑥)
Subject to:

∑):A∈B! 𝑥) ≥ 1, ∀𝑢 ∈ 𝑈
𝑥) ∈ 0,1 , ∀𝑖 ∈ {1,… ,𝑚}

(Set cover LP Σ) Min ∑)5'? 𝑥)
Subject to:

∑):A∈B! 𝑥) ≥ 1, ∀𝑢 ∈ 𝑈
0 ≤ 𝑥) ≤ 1, ∀𝑖 ∈ {1,… ,𝑚}

Let 𝑥∗ be an optimal soln. for LP Σ
& optimal value OPT = ∑) 𝑥)∗

L 𝑥) ≔ ⌊𝑥)∗⌉

§ Randomized rounding: set 𝑥' = 1with probability 𝑥'∗

𝔼 ∑'8,> 𝑥' = ∑'8,> 𝔼[𝑥'] = ∑'8,> 𝑥'
∗

§But is it feasible? [Further analysis on board & Panigrahi’s notes] 
Theorem. There is a poly-time randomized algorithm achieving 𝑂(log 𝑛)
expected approximation ratio, except w. probability 𝑂(1/𝑛).


