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Establishing NP-Completeness

Once we establish first "natural” NP-complete problem, others fall
like dominoes ...

Recipe to establish NP-Completeness of problem Y

|. Show that Y € NP
2. Choose an NP—complete problem X

3. Provethat X <pgqrp Y

Justification. If X is an NP-complete problem, and Y is a problem
in NP with the property that X <p x4, Y then Y is NP-complete (by
transitivity)



(DIR—)HAM—CYCLE is NP-Complete

(DIR—)HAM~—CYCLE. Given a directed graph G = (V, E), does there
exist a directed cycle I that visits every node exactly once?

Theorem. 3—SAT <, (DIR—)HAM—CYCLE
Pf. Given 3—SAT instance ® in CNF: n variables x; and k clauses C;

]

Intuition: traverse row i from left to right & set variable x; = true



3—SAT <, (DIR—)HAM—CYCLE

Ci =x1VXy VX3 [+ Cz=x1Vx2Vx3}
N 7

Claim. @ is satistfiable iff. G has a Hamiltonian cycle



3—SAT <, (DIR—)HAM—CYCLE

Claim. @ is satistfiable iff. G has a Hamiltonian cycle

(=) Suppose @ has a satisfying assign. x*. Define an H-Cycle in G:
e if x; = true, traverse row x; from left to right
« if x; = false, traverse row x; from right to left

* For each clause (; pick (only) one row i and take a detour

(<) Suppose G has a H-Cycle I'. Define a satisfying assign. in &:

* In T, replace edges going/leaving C; with the edge of the corresponding two nodes
in some row. This gives a new cycle I in G — {C;, C5, ..., Ci}

 In T, set x; = true if I'" traverses row i left-to-right; set x; = false ¢

_____________



Hard computational problems cont’d

* Aerospace engineering: optimal mesh partitioning for finite elements.

Chemical engineering: heat exchanger network synthesis

Civil engineering: equilibrium of urban traffic flow

Electrical engineering:VLSI layout.

Mechanical engineering: structure of turbulence in sheared flows
Biology: protein folding

Physics: partition function of 3-D Ising model in statistical mechanics.
Economics: computation of arbitrage in financial markets with friction
Financial engineering: find minimum risk portfolio of given return

(6]

Politics: Shapley-Shubik voting power 6

POP culture: Sudoku (http://www-imai.is.s.u-tokyo.ac.jp/~yato/data2/SIGAL87-2.pdf)

|00

—

(6]



http://www-imai.is.s.u-tokyo.ac.jp/~yato/data2/SIGAL87-2.pdf

Want to learn more?
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Complexity Zoo
There are now 544
classes and counting!

TCo



https://en.wikipedia.org/wiki/Michael_Garey
https://en.wikipedia.org/wiki/David_S._Johnson
http://www.cs.princeton.edu/~arora/
http://www.boazbarak.org/
https://complexityzoo.uwaterloo.ca/Complexity_Zoo
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Coping with NP-Completeness

i

“I can’t find an efficient algorithm, I guess I'm just too dumb.”

ML L L.

**I can't find an efficient algorithm, but neither can all these famous people.”

https://i.stack.imgur.com/EkplV.jpg
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» Better (constructive) answers:

+—Se
2—Seo
3—Se

veprob

sacrifice one of three desired features

g

veprob

= Techniques
* |dentifying structured special cases

ot

* Local search heuristics (e.g., gradient descent)

* Approximation algorithms



Finding near-optimal vertex cover

Input. Graph ¢ = (V,E)

* Vertex cover S € V:subset of vertices that touches all edges

Goal. Find a vertex cover S of minimum size
= First attempt: greedily pick the vertex that covers most edges

APP-VC: on input ¢ = (V,E)
For v € V (in descending order of degrees)
Addvin §
Delete v and its neighbors from G

= Claim. Suppose the minimum vertex cover has size OPT. Then the
output of APP-VC has size at most O(logn - OPT)

= Pf. Exercise



2-approximation vertex cover

Recall: M € E is a matching in G = (V,E) it each node appears in at
most one edge in M.

Observation: For any matching M and any vertex cover S, |[M| <
|S|. In particular, [M| < OPT (size of min vertex cover).

= 2nd attempt: find a MAX matching

2-APP-VC: oninput ¢ = (V,E)
Find a maximal matching M C E
Return S = {all end points of edges in M}

= Claim. The output of 2-APP-VC has size at most 2 - OPT

= Pf. |S| = 2|M| < 2 - OPT. Why does S have to be a vertex cover?
* Exercise. s this tight, i.e., 8-APP-VC’s output = 2 - OPT on some graph?




Scarce computational resources,
which to invest on?

www.flickr.com www.nvidia.com www.computerhope.com
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How about ... coins?

Theorem. Randomness is useful

= Randomization. Allow fair coin flip in unit time
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Power of randomness: primality testing

s integer . Prime?

20,988,936,657,440,586,486,151,264,256,610,222,593,863,92 |

* Naive method: 0(n)
= Randomized algorithm: Miller-Rabin 1977 0(log* n)
= Deterministic algorithm: AKS 2002 0(log!4 n)

Miller-Rabin is still the way to go in practice!
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Power of randomness: perfect matching

» Deterministic algorithm: O(nm)

» Randomized algorithm: 0(log€ nm)
Exponentially faster!

m: # edges
n:# nodes
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Power of randomness beyond algorithm design

Probabilistic constructions Cryptography

o
@ Q Probabilistic Encryption*

Nice error-correction codes exist:
codes

SHAFI GOLDWASSER AND SiLvio MICALI
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Probability 101

= (Discrete) Sample space () = {w}
* set of all possible outcomes of a random experiment
* Event E € ():a subset of the sample space

= Axioms of probability: a probability distribution is a mapping
from events to real numbers Pr(:): P(Q)) — [0,1], satisfying
* Probability of an event Pr(E) = 0 for any event E

. Pr(Q) =1

* Pr(EUF) =Pr(E) + Pr(F)if EN F = @ (mutually exclusive)

» Ex. Roll a fair dice
.« 0 =1{1,2,3,45,6}, Pr(w) =
« E = {1,3,5} dice being odd,

1
6
&

,w=1,...,6.

Pr(E) = 1/2

N.B.E := Q\E complement event
Pr(E) =1 — Pr(E)

15




Probability 101 cont'd

Pr(AnB)
Pr(4)
Bayes’ theorem

Let E, F be two events and Pr(F) > 0.

Then Pr(E|F) = Pr(F|E) - ‘;;Eg |

= Conditional probability: Pr(B|A) = ,assuming Pr(4) > 0.

" Independence: Events A, B are independent iff. Pr(B|A) = Pr(B).

i.,e.Pr(An B) = Pr(4) - Pr(B)

16



Probability 101 cont'd

» Random variable X: Q - N

* Assign each outcome a number
« “X =x"istheevent E = {w € Q: X(w) = x}
* Independent random variables:

X, Y are indep. iff. for all possible x and y, events X = x and Y = y are indep.
= Expectation: a weighed average

¢ E[X] = e, Pr(X = 2) - 2
* Linearity: E|[X + Y] = E|X]| + E[Y] (independence NOT needed)

= Ex. (0 = roll 4 dices independently
* Let X be the sum of 4 rolls; X; be value of ith roll,i =1, ..., 4

e E[X] =E[X;+ -+ X,] =4-E[X,] = 4x3.5 = 14
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Recall: quick sort

* Main Idea
* Divide array into two halves. with condition: L < pivot < R
* Recursively sort each half.
* Merge two halves to make sorted whole. trivially

= Analysis

e Correctness

* Running time*
Cost in divide, not merge

T(n) = ZT(TL/ 2) + O(n)/ * best-case partition

= Can you think of a worst-case scenario?

18



Randomized quicksort

= Pick the pivot

Rand-QuickSort(A):
if (array A has zero or one element)
Return
Pick pivotp € A4
(L, M,R) « PARTITION — 3 — WAY(4,p) — ~ 0(n)

Rand-QuickSort(L) — T(1)
Rand-QuickSort(R) —— T(n—i—1)
Theorem. The number of compares to quicksort an array

of n distinct elements is O( ).

19



Randomized quicksort: analysis

Theorem. The expected number of compares to quicksort an array
of n distinct elements is O(n log n).

Assume A = {z4,25, ..., 23}, 21 < 29 < -+ < zZ,
Observation: any pair z; & z; (i < j) is compared at most once

* How many comparisons? X := total number of comparisons

1,if z; is compared to z;
 |ndicator variable: Xl-j — { ‘ P )

0, otherwise
= E - E[Zn y = l+1X'j]

= Zn ) 7 i+1 E[X; ] Zn ) }1 i+1 Pr‘[Xij =1}

Linearity

20



Randomized quicksort: analysis cont’d

Theorem. The expected number of compares to quicksort an array
of n distinct elements is O(n log n).

1,if z; is compared to z;
- n-—1 n _ — ! l J
IE[X] — Zi=1 j=i+1 Pr[Xij o 1] Aij '_{ 0, otherwise

= When two items are compared?

213465.9810

\ )
|

No comparison across these two groups

= Observation: z; & z; compared iff. z; or z; was the first chosen as
d inOt from Zl] — {Zi'Zi+1' ...,Z'}

21



Randomized quicksort: analysis cont’d

= Observation: z; & z; compared iff. z; or z; was the first chosen as
d inOt from Zl] — {Zi'Zi+1' ...,Z'}

PI‘[Xij — 1]
= Pr|z; & z; compared| = Pr|[z; or z; is 1st pivot chosen from Z;]
= Pr|z; is 1st pivot from Z;;] + Pr|z; is 1st pivot from Z;;]
1 1 2
=— + = ——
j—i+1 j—i+1 j—-i+1

!

_ 2 _ y 7 _ 1
E[X] = Z?=11 ﬁi“ﬁ = Z?:f Yk=177=2" 2?:11 71}:1; = 0(n-logn)
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Contention resolution in a distributed system

Given: processes Py, ..., B,
* each process competes for access to a shared database.
* If = 2 processes access the database simultaneously, all processes are locked out.

Goal: a protocol so all processes get through on a regular basis

= Restriction: Processes can't communicate.

23



Contention resolution: randomized protocol

Protocol. Each process requests access to the database in round
t with probability p = 1/n.

Theorem. All processes will succeed in accessing the database at
least once within O(n Inn) rounds except with probability < %

24



Randomized contention resolution: analysis 1

Def. S[i, t] = event that process i succeeds in accessing the
database in round t.

: 1 . 1
= Claim1. —= Pr(S[i, t]) < -~

= Pf. Pr(S[i, t]) = p(1 — p)n—l [Geometric distribution:

/ \independent Bernoulli trials]

Process i requests access None of remaining request access

= Pr(S[i, t]) = % 1-1/n)"1e [é,%] [p =1/n]

* (1-1/n)" converges monotonically from 1/4 up to 1/e.
* (1-1/n)""! converges monotonically from 1/2 down to 1/e..

25



Randomized contention resolution: analysis 2

= Claim2. The probability that process i fails to access the database
in e - n rounds is at most 1/e. After e - n (¢ Inn) rounds, the
probability < n™°.

= Pf. Let F[i, t] = event that process i fails to access database in
rounds 1 through t.
t

Pr(F[i,t]) = Pr(S[;,1]) - .- Pr(S[5,¢]) < (1 - %) lIndependence & Claim 1]

1 en
e Choose :Pr(Fli, t]) < (1 - —) <

en o

1 clnn
e Choose :Pr(Fli, t]) < (;) <

26



Randomized contention resolution: analysis 3

Theorem. All processes will succeed in accessing the database at

least once within rounds except with probability
= Pf. Let F[t] = event that process fails to access database in
rounds 1 through t. Union Bound

Let E, F be two events. Then
Pr(E UF) < Pr(E) + Pr(F).

. Pr(F[i,t]) < n-Pr(F|1,t])
i=1

27



Integer linear programming (ILP)

Input. Graph ¢ = (V,E)

* Vertex cover S € V:subset of vertices that touches all edges

Goal. Find a vertex cover S of minimum size
= Formulating vertex cover as an integral linear program

For each i € V, introduce x; € {0,1}  [i.e., Pick i in vertex cover iff. x; = 1]
Min Z?:l X
Subject to:

x;+x; =1 foreach (i,j) EE

® We don’t know (expect) a poly-time algorithm (ILP)
* Without integrality (LP), we do know poly-time algorithms

28



Putting aside the integral constraint

(ILP IT) Min }.}*, x; (LP X) Min )/-; x;
Subject to: Subject to:
Xi+Xj21, V(i,j)EE ‘ Xi+Xj21, V(i,j)EE
xiE{O,l}, VieV OSXLSL VieV
( .1 ! Let x* be an optimal soln. for LP X
x; = |xf] =+ 1, ifx; = > @ & optimal value OPT = Y; x}
0, otherwise

* (Threshold) Rounding:

. . S . - 1 1
i.  {x;}is afeasible integral solution:V(i,j) € E, x; > > or X; = > or both

i, Y.ox; <Y;2-xf =2-0PT < 2-O0PTyy, [optimal value of ILP II,
i.e. size of min vertex cover]

29



LP relaxation

1. Valid? 2. Good?

Solve in \

Optimization Relax — Fractional poly-time Round %
Problem * relaxation "Xt " inte ger
ILP LP
_ Dual  Primal
LP Dual feasible Mo | Mic Primal feasible
ILP Integral Dual Integral Primal .
Integral feasible Max Min Integral feasible

»

&
< ¢ >

Integrality gap
(the smaller the better)

30



Hardness of approximation

1.36 - OPT 2-O0OPT

® NP—hardl | © LP relax / matching
OPT . I I g

(Min Vertex cover) ® NP—hard

(under UGC)

Theorem. It is NP-Hard to approximate Vertex Cover to with any
factor below 1.36067.

[i.e., otherwise, you can solve 3-SAT in poly-time]

Theorem’. It is NP-Hard to approximate Vertex Cover to with any
factor below 2, assuming the unique games conjecture (UGC).

Want to read more!
https://cs.nyu.edu/~khot/papers/UGCSurvey.pdf

https://cs.stanford.edu/people/trevisan/pubs/inapprox.pdf
31



https://cs.nyu.edu/~khot/papers/UGCSurvey.pdf

Approximating set cover

Input. Set U of n elements, S, ..., S,, of subsets of U
Goal. Find 1 € {1, ..., m} of size such that

(ILP II for Set cover)

Foreachi € {1, ..., m}, introduce x; € {0,1}
Subject to:

2 .'X,'l'Zl, YueU

32



LP relaxation for set cover

(Set cover ILP I) (Set cover )
Min 2:11 X ‘ Min 2:11 X
Subject to: Subject to:
z Xl'Zl, YueU z x; =1, YueU
L:UES; [:UES;
x; € {0,1}, Vi € {1, .., m} 0<x;<1,Vie{l,.. m}
§ Let x* be an optimal soln. for LP X
? x= ] Ao & optimal value OPT = ); x;
* Threshold rounding: does it cover all elements?
e Ex.u € Sl' ...,5100; XI, ...xikOO — Flo = X1 = "= X100 = 0. u is missed!

» Randomized rounding!
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LP relaxation for set cover

(Set cover ILP IT) Min Y% x; (Set cover LP X) Min Y./, x;
Subject to: - Subject to:
Dies, xi=1, VuelU Yiues X =1, VUEU
x; € {0,1}, Vi e {1,...,m} 0<x;<1,Vie{l,.. m}
® x; = |x]] @m Let x” bean optimal soln.for LP X

& optimal value OPT = ); x;
= Randomized rounding: set x; = 1 with probability x;

E[X %] = 22, Elx] =270 %

= But is it fea5|b|e? [Further analysis on board & Panigrahi’s notes]

Theorem. There is a poly-time randomized algorithm achieving O (log n)
expected approximation ratio, except w. probability 0(1/n).
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