

W'21 CS 584/684

Algorithm Design & Analysis

Fang Song

Lecture 19

- Hamiltonian Cycle
- Approximation algorithms
- Randomized algorithms

Establishing NP-Completeness

Once we establish first "natural" NP-complete problem, others fall like dominoes ...

Recipe to establish NP-Completeness of problem Y

- I. Show that $Y \in \mathbf{NP}$
- 2. Choose an NP–complete problem *X*
- 3. Prove that $X \leq_{P,Karp} Y$

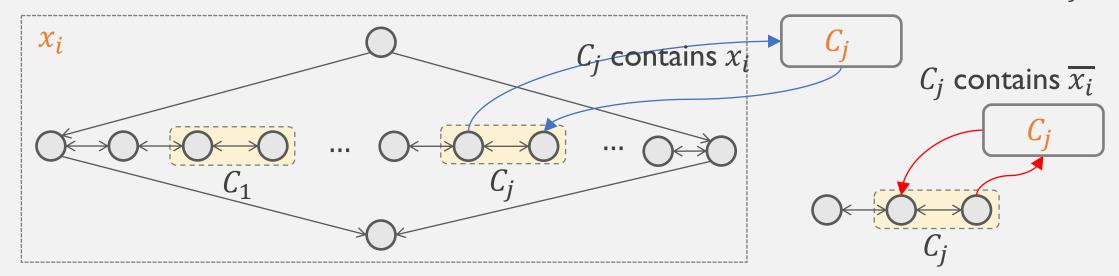
Justification. If X is an NP-complete problem, and Y is a problem in NP with the property that $X \leq_{P,Karp} Y$ then Y is NP-complete (by transitivity)

(DIR–)HAM–CYCLE. Given a directed graph G = (V, E), does there exist a directed cycle Γ that visits every node exactly once?

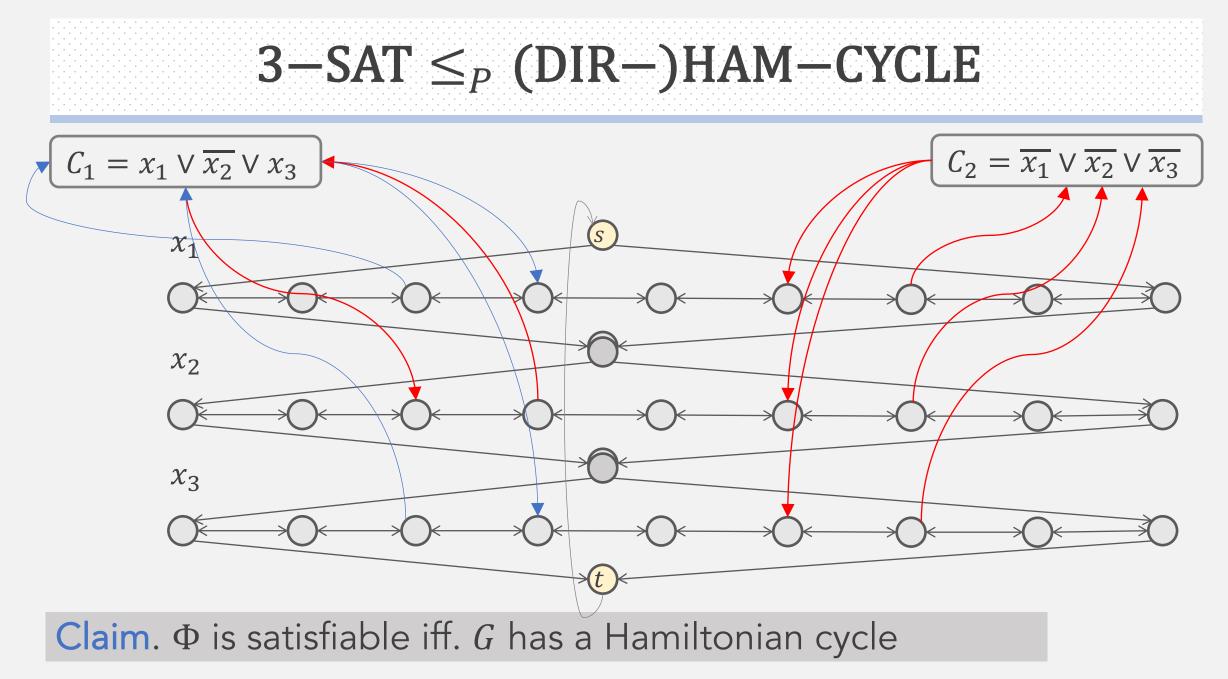
(DIR-)HAM-CYCLE is NP-Complete

Theorem. $3-SAT \leq_P (DIR-)HAM-CYCLE$

Pf. Given 3–SAT instance Φ in CNF: *n* variables x_i and *k* clauses C_i



Intuition: traverse row *i* from left to right \Leftrightarrow set variable x_i = true



Claim. Φ is satisfiable iff. G has a Hamiltonian cycle

(⇒) Suppose Φ has a satisfying assign. x^* . Define an H-Cycle in G:

 $3-SAT \leq_P (DIR-)HAM-CYCLE$

- if $x_i^* = \text{true}$, traverse row x_i from left to right
- if $x_i^* = \text{false}$, traverse row x_i from right to left
- For each clause C_i pick (only) one row *i* and take a detour \bigcirc

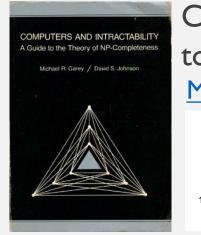
(\Leftarrow) Suppose G has a H-Cycle Γ . Define a satisfying assign. in Φ :

- In Γ , replace edges going/leaving C_j with the edge of the corresponding two nodes in some row. This gives a new cycle Γ' in $G \{C_1, C_2, \dots, C_k\}$
- In Γ' , set x_i = true if Γ' traverses row *i* left-to-right; set x_i = false otherwise

• Aerospace engineering: optimal mesh partitioning for finite elements.

Hard computational problems cont'd

- Chemical engineering: heat exchanger network synthesis
- Civil engineering: equilibrium of urban traffic flow
- Electrical engineering:VLSI layout.
- Mechanical engineering: structure of turbulence in sheared flows
- Biology: protein folding
- Physics: partition function of 3-D Ising model in statistical mechanics.
- Economics: computation of arbitrage in financial markets with friction
- Financial engineering: find minimum risk portfolio of given return
- Politics: Shapley-Shubik voting power
- Pop culture: Sudoku (<u>http://www-imai.is.s.u-tokyo.ac.jp/~yato/data2/SIGAL87-2.pdf</u>)



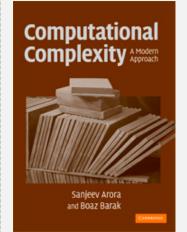
Computers and Intractability: A Guide to the Theory of NP-Completeness. Michael Garey and David S. Johnson

Want to learn more?

Most Cited Computer Science Citations

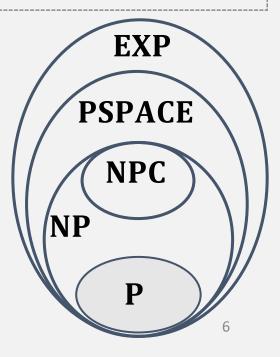
This list is generated from documents in the CiteSeer^x database as of March 19, 2015. This list is automaticall mode and citation counts may differ from those currently in the CiteSeer^x database, since the database is con All Years | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 20 | 2015

 M R Garey, D S Johnson Computers and Intractability: A Guide to the Theory of NPCompleteness" W.H. Feeman and 1979 11468



Computational Complexity: A Modern Approach Sanjeev

Arora & Boaz Barak



Coping with NP-Completeness

"I can't find an efficient algorithm, I guess I'm just too dumb."

"I can't find an efficient algorithm, but neither can all these famous people."

https://i.stack.imgur.com/EkpIV.jpg

- Better (constructive) answers: sacrifice one of three desired features
 - Solve arbitrary instances
 Solve problems in poly-time
 - 3. Solve problems to optimality

Techniques

- Identifying structured special cases
- Local search heuristics (e.g., gradient descent)
- Approximation algorithms

Input. Graph G = (V, E)

• Vertex cover $S \subseteq V$: subset of vertices that touches all edges

Goal. Find a vertex cover S of minimum size

First attempt: greedily pick the vertex that covers most edges

Finding near-optimal vertex cover

```
APP-VC: on input G = (V, E)
For v \in V (in descending order of degrees)
Add v in S
Delete v and its neighbors from G
```

- Claim. Suppose the minimum vertex cover has size OPT. Then the output of APP-VC has size at most $O(\log n \cdot OPT)$
- Pf. Exercise

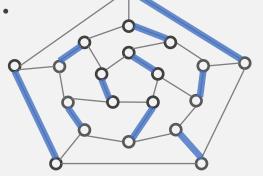
Recall: $M \subseteq E$ is a matching in G = (V, E) if each node appears in at most one edge in M.

2-approximation vertex cover

Observation: For any matching M and any vertex cover S, $|M| \le |S|$. In particular, $|M| \le OPT$ (size of min vertex cover).

Ind attempt: find a MAX matching

2-APP-VC: on input G = (V, E)Find a maximal matching $M \subseteq E$ **Return** $S = \{$ all end points of edges in $M \}$

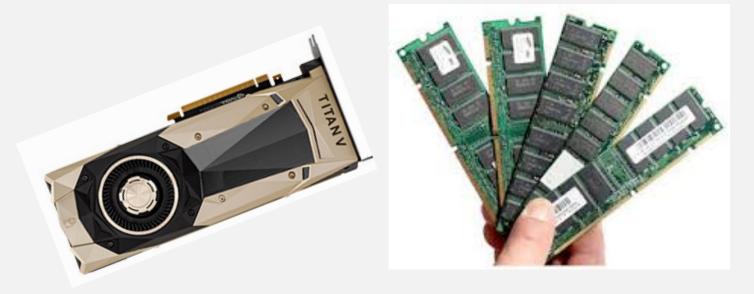


Claim. The output of 2-APP-VC has size at most 2 · OPT

• Pf. $|S| = 2|M| \le 2 \cdot 0$ PT. Why does S have to be a vertex cover?

• Exercise. Is this tight, i.e., 2-APP-VC's output = $2 \cdot 0PT$ on some graph?

Scarce computational resources, which to invest on?



www.flickr.com

www.nvidia.com

www.computerhope.com

How about ... coins?

Theorem. Randomness is useful

Randomization. Allow fair coin flip in unit time

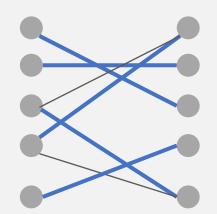
Is integer *n* Prime?

Power of randomness: primality testing

20,988,936,657,440,586,486,151,264,256,610,222,593,863,921

- Naive method: O(n)
- Randomized algorithm: Miller-Rabin 1977 O(log⁴ n)
- Deterministic algorithm: AKS 2002 $O(\log^{12} n)$

Miller-Rabin is still the way to go in practice!



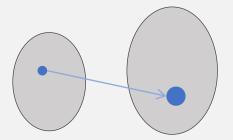
Deterministic algorithm: 0(nm)

Power of randomness: perfect matching

Randomized algorithm: O(log^c nm) Exponentially faster!

m:# edges n:# nodes

Probabilistic constructions



Nice error-correction codes exist: random codes

Probabilistic Encryption*

SHAFI GOLDWASSER AND SILVIO MICALI

• (Discrete) Sample space $\Omega = \{\omega\}$

- set of all possible outcomes of a random experiment
- Event $E \subseteq \Omega$: a subset of the sample space
- Axioms of probability: a probability distribution is a mapping from events to real numbers $Pr(\cdot): \mathcal{P}(\Omega) \rightarrow [0,1]$, satisfying

Probability 101

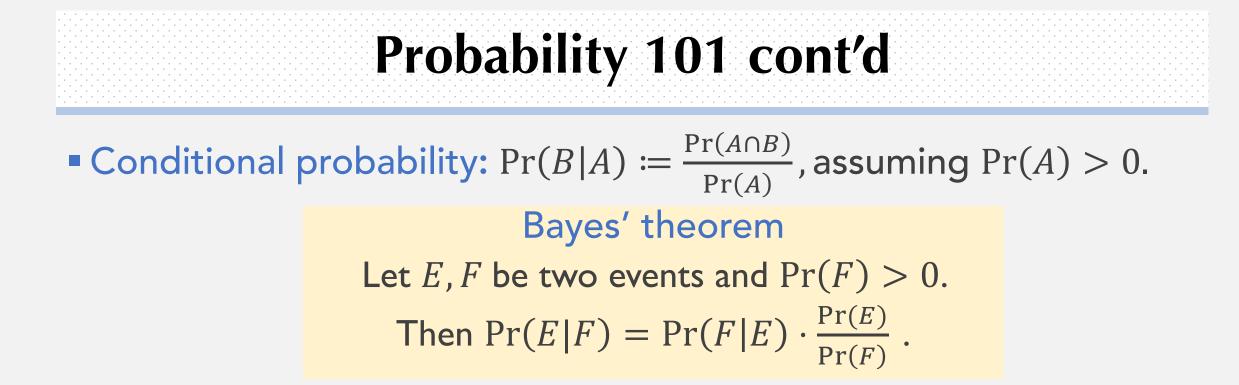
- Probability of an event $Pr(E) \ge 0$ for any event *E*
- $\Pr(\Omega) = 1$
- $Pr(E \cup F) = Pr(E) + Pr(F)$ if $E \cap F = \emptyset$ (mutually exclusive)

• Ex. Roll a fair dice

•
$$\Omega = \{1, 2, 3, 4, 5, 6\}, \Pr(\omega) = \frac{1}{6}, \omega = 1, \dots, 6.$$

• $E = \{1,3,5\}$ dice being odd, & Pr(E) = 1/2

N.B.
$$\overline{E} \coloneqq \Omega \setminus E$$
 complement event
 $Pr(\overline{E}) = 1 - Pr(E)$



• Independence: Events A, B are independent iff. Pr(B|A) = Pr(B). i.e. $Pr(A \cap B) = Pr(A) \cdot Pr(B)$

• Random variable $X: \Omega \to \mathbb{N}$

- Assign each outcome a number
- "X = x" is the event $E \coloneqq \{\omega \in \Omega: X(\omega) = x\}$
- Independent random variables:

X, Y are indep. iff. for all possible x and y, events X = x and Y = y are indep.

Probability 101 cont'd

Expectation: a weighed average

- $\mathbb{E}[X] = \sum_{z \in Z} \Pr(X = z) \cdot z$
- Linearity: $\mathbb{E}[X + Y] = \mathbb{E}[X] + \mathbb{E}[Y]$ (independence NOT needed)

• Ex. Ω = roll 4 dices independently

- Let X be the sum of 4 rolls; X_i be value of *i*th roll, i = 1, ..., 4
- $\mathbb{E}[X] = \mathbb{E}[X_1 + \dots + X_4] = 4 \cdot \mathbb{E}[X_1] = 4 \times 3.5 = 14$

Main Idea

• Divide array into two halves.

 $T(n) = 2T(n/2) + O(n)^{4}$

- Recursively sort each half.
- Merge two halves to make sorted whole.

Analysis

- Correctness
- Running time*

Cost in divide, not merge

* best-case partition

Recall: quick sort

Can you think of a worst-case scenario?

with condition: $L \leq pivot \leq R$

trivially

Pick the pivot randomly Rand-QuickSort(A): if (array A has zero or one element) Return Pick pivot $p \in A$ uniformly at random O(n) $(L, M, R) \leftarrow \text{PARTITION} - 3 - \text{WAY}(A, p)$ Rand-QuickSort(L) \rightarrow T(i) Rand-QuickSort(R) $\longrightarrow T(n-i-1)$

Theorem. The expected number of compares to quicksort an array of n distinct elements is $O(n \log n)$.

Randomized quicksort

Theorem. The expected number of compares to quicksort an array of n distinct elements is $O(n \log n)$.

Assume $A = \{z_1, z_2, ..., z_n\}, z_1 < z_2 < \dots < z_n$

Observation: any pair $z_i \& z_j$ (i < j) is compared at most once

• How many comparisons? $X \coloneqq$ total number of comparisons

• Indicator variable:
$$X_{ij} \coloneqq \begin{cases} 1, \text{ if } z_i \text{ is compared to } z_j \\ 0, \text{ otherwise} \end{cases}$$

$$\Rightarrow \mathbb{E}[X] = \mathbb{E}\left[\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij}\right]$$

= $\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \mathbb{E}[X_{ij}] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \Pr[X_{ij} = 1]$
Linearity

Theorem. The expected number of compares to quicksort an array of n distinct elements is $O(n \log n)$.

Randomized quicksort: analysis cont'd

$$\mathbb{E}[X] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \Pr[X_{ij} = 1] \qquad X_{ij} \coloneqq \begin{cases} 1, \text{ if } z_i \text{ is compared to } z_j \\ 0, \text{ otherwise} \end{cases}$$

When two items are compared?

No comparison across these two groups

• Observation: $z_i \& z_j$ compared iff. z_i or z_j was the first chosen as a pivot from $Z_{ij} = \{z_i, z_{i+1}, \dots, z_j\}$ • Observation: $z_i \& z_j$ compared iff. z_i or z_j was the first chosen as a pivot from $Z_{ij} = \{z_i, z_{i+1}, \dots, z_j\}$

Randomized quicksort: analysis cont'd

$$\Pr[X_{ij} = 1]$$

$$= \Pr[z_i \& z_j \text{ compared}] = \Pr[z_i \text{ or } z_j \text{ is 1st pivot chosen from } Z_{ij}]$$

$$= \Pr[z_i \text{ is 1st pivot from } Z_{ij}] + \Pr[z_j \text{ is 1st pivot from } Z_{ij}]$$

$$= \frac{1}{j-i+1} + \frac{1}{j-i+1} = \frac{2}{j-i+1}$$

$$\mathbb{E}[X] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1} = \sum_{i=1}^{n-1} \sum_{k=1}^{n-i} \frac{2}{k+1} \le 2 \cdot \sum_{i=1}^{n-1} \sum_{k=1}^{n} \frac{1}{k} = O(n \cdot \log n)$$
Harmonic series

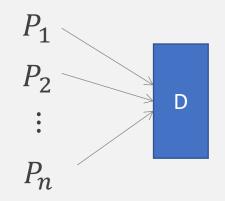
Contention resolution in a distributed system

Given: processes P_1, \ldots, P_n ,

- each process competes for access to a shared database.
- If ≥ 2 processes access the database simultaneously, all processes are locked out.

Goal: a protocol so all processes get through on a regular basis

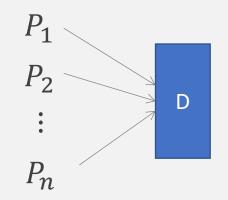
Restriction: Processes can't communicate.



Contention resolution: randomized protocol

Protocol. Each process requests access to the database in round t with probability p = 1/n.

Theorem. All processes will succeed in accessing the database at least once within $O(n \ln n)$ rounds except with probability $\leq \frac{1}{n}$.



Def.
$$S[i, t] =$$
 event that process *i* succeeds in accessing the
latabase in round *t*.
Claim1. $\frac{1}{e \cdot n} \leq \Pr(S[i, t]) \leq \frac{1}{2n}$
Pf. $\Pr(S[i, t]) = p(1 - p)^{n-1}$ [Geometric distribution:
independent Bernoulli trials]
Process *i* requests access None of remaining request access
 $\Rightarrow \Pr(S[i, t]) = \frac{1}{n}(1 - 1/n)^{n-1} \in [\frac{1}{en}, \frac{1}{2n}]$ $[p = 1/n]$

Randomized contention resolution: analysis 1

(1-1/n)ⁿ converges monotonically from 1/4 up to 1/e.
(1-1/n)ⁿ⁻¹ converges monotonically from 1/2 down to 1/e.

Randomized contention resolution: analysis 2

- Claim2. The probability that process i fails to access the database in $e \cdot n$ rounds is at most 1/e. After $e \cdot n$ ($c \ln n$) rounds, the probability $\leq n^{-c}$.
- Pf. Let F[i, t] = event that process *i* fails to access database in rounds 1 through t.

$$\Pr(F[i,t]) = \Pr\left(\overline{S[i,1]}\right) \cdot \dots \cdot \Pr\left(\overline{S[i,t]}\right) \le \left(1 - \frac{1}{en}\right)^t \quad \text{[Independence of the second seco$$

- & Claim 1]
- Choose t = en: $\Pr(F[i, t]) \le \left(1 \frac{1}{en}\right)^{en} \le \frac{1}{e}$ Choose $t = en \cdot clnn$: $\Pr(F[i, t]) \le \left(\frac{1}{e}\right)^{clnn} \le n^{-c}$

Randomized contention resolution: analysis 3

Theorem. All processes will succeed in accessing the database at least once within $2en \ln n$ rounds except with probability $\leq \frac{1}{n}$.

• Pf. Let F[t] = event that some process fails to access database in rounds 1 through t.
Union Bound

Let *E*, *F* be two events. Then $Pr(E \cup F) \le Pr(E) + Pr(F)$.

 $\Pr(F[t]) = \Pr(\bigcup_{i=1}^{n} F[i,t]) \leq \sum_{i=1}^{n} \Pr(F[i,t]) \leq n \cdot \Pr(F[1,t])$

• Choose $t = en \cdot 2\ln n$: $\Pr(F[t]) \le n \cdot n^{-2} = 1/n$

Input. Graph G = (V, E)

• Vertex cover $S \subseteq V$: subset of vertices that touches all edges

Goal. Find a vertex cover S of minimum size

Formulating vertex cover as an integral linear program

For each $i \in V$, introduce $x_i \in \{0,1\}$ Min $\sum_{i=1}^{n} x_i$ Subject to: $x_i + x_j \ge 1$ for each $(i,j) \in E$ [i.e., Pick *i* in vertex cover iff. $x_i = 1$]

Integer linear programming (ILP)

⁽³⁾ We don't know (expect) a poly-time algorithm (ILP)

• Without integrality (LP), we do know poly-time algorithms

$$P \Pi) \operatorname{Min} \sum_{i=1}^{n} x_{i}$$
bject to:

$$x_{i} + x_{j} \ge 1, \quad \forall (i, j) \in E$$

$$x_{i} \in \{0, 1\}, \quad \forall i \in V$$

$$x_{i} \coloneqq [x_{i}^{*}] = \begin{cases} 1, & \text{if } x_{i}^{*} \ge \frac{1}{2} \\ 0, & \text{otherwise} \end{cases}$$

(LP Σ) Min $\sum_{i=1}^{n} x_i$ Subject to: $x_i + x_j \ge 1$, $\forall (i, j) \in E$ $0 \le x_i \le 1$, $\forall i \in V$

Let x^* be an optimal soln. for LP Σ & optimal value OPT = $\sum_i x_i^*$

(Threshold) Rounding:

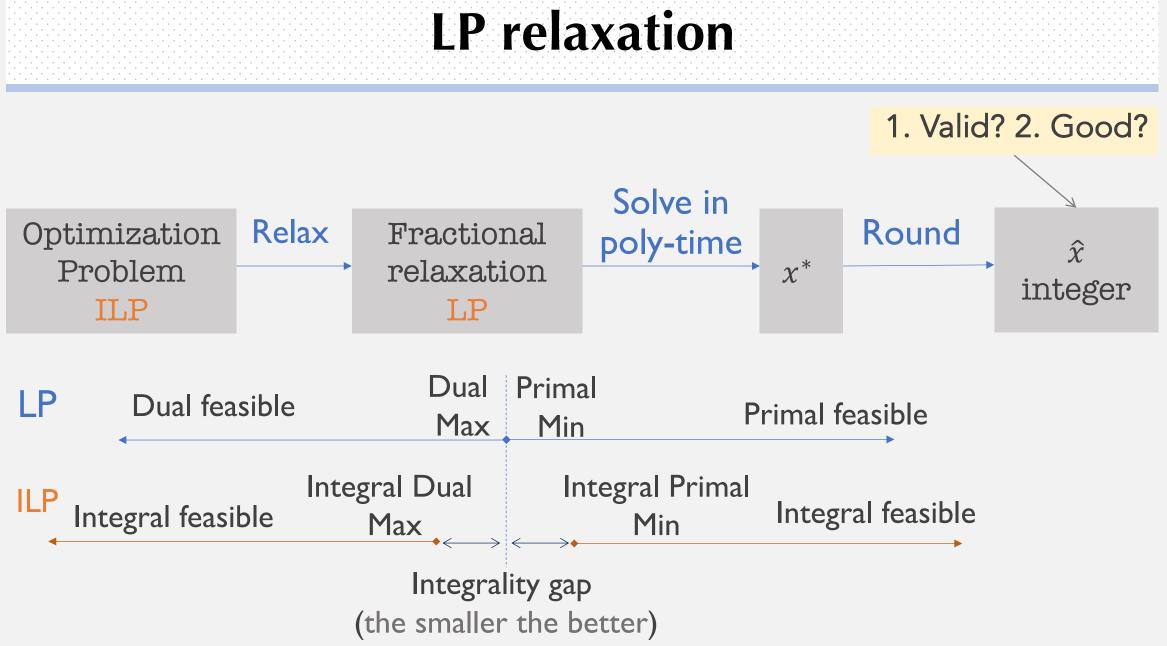
Su

i. $\{x_i\}$ is a feasible integral solution: $\forall (i,j) \in E, x_i^* \ge \frac{1}{2}$ or $x_j^* \ge \frac{1}{2}$ or both

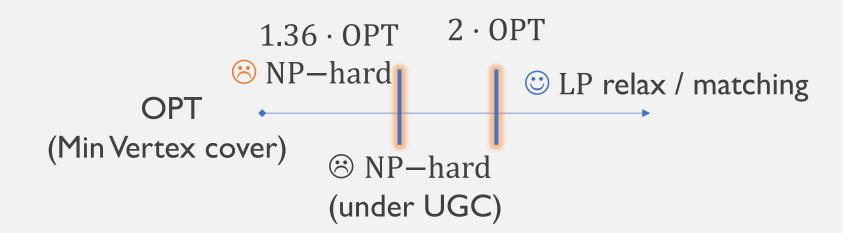
Putting aside the integral constraint

ii. $\sum_{i} x_i \le \sum_{i} 2 \cdot x_i^* = 2 \cdot \text{OPT} \le 2 \cdot \text{OPT}_{\text{Int}}$

[optimal value of ILP П, i.e. size of min vertex cover]



Hardness of approximation



Theorem. It is NP-Hard to approximate Vertex Cover to with any factor below 1.36067. [i.e., otherwise, you can solve 3-SAT in poly-time]

Theorem'. It is NP-Hard to approximate Vertex Cover to with any factor below 2, assuming the unique games conjecture (UGC).

Want to read more?

<u>https://cs.nyu.edu/~khot/papers/UGCSurvey.pdf</u> <u>https://cs.stanford.edu/people/trevisan/pubs/inapprox.pdf</u>

Input. Set U of n elements, $S_1, ..., S_m$ of subsets of U Goal. Find $I \subseteq \{1, ..., m\}$ of minimum size such that $\bigcup_{i \in I} S_i = U$

Approximating set cover

(ILP Π for Set cover)

For each $i \in \{1, ..., m\}$, introduce $x_i \in \{0, 1\}$ Min $\sum_{i=1}^{m} x_i$ Subject to: $\sum_{i:u \in S_i} x_i \ge 1, \quad \forall u \in U$

$$(\text{Set cover ILP }\Pi)$$

$$\min \sum_{i=1}^{m} x_i$$

$$\text{Subject to:}$$

$$\sum_{i:u \in S_i} x_i \ge 1, \quad \forall u \in U$$

$$x_i \in \{0,1\}, \quad \forall i \in \{1, \dots, m\}$$

$$(\text{Set cover }\Sigma)$$

$$\min \sum_{i=1}^{m} x_i$$

$$\text{Subject to:}$$

$$\sum_{i:u \in S_i} x_i \ge 1, \quad \forall u \in U$$

$$0 \le x_i \le 1, \forall i \in \{1, \dots, m\}$$

Let x^* be an optimal soln. for LP Σ & optimal value OPT = $\sum_{i} x_{i}^{*}$

 $x_i \ge 1$, $\forall u \in U$

Threshold rounding: does it cover all elements?

• Ex.
$$u \in S_1, ..., S_{100}; x_1^*, ..., x_{100}^* = \frac{1}{100} \Rightarrow x_1 = \dots = x_{100} = 0.$$
 u is missed!

LP relaxation for set cover

Randomized rounding!

 $x_i \coloneqq |x_i^*|$

2

LP relaxation for set cover(Set cover ILP II)
$$Min \sum_{i=1}^{m} x_i$$

Subject to:
 $\sum_{i:u \in S_i} x_i \ge 1, \forall u \in U$
 $x_i \in \{0,1\}, \forall i \in \{1, ..., m\}$ (Set cover LP Σ) $Min \sum_{i=1}^{m} x_i$
Subject to:
 $\sum_{i:u \in S_i} x_i \ge 1, \forall u \in U$
 $0 \le x_i \le 1, \forall i \in \{1, ..., m\}$ $\bigotimes x_i \coloneqq [x_i^*]$ \bigstar $\bigotimes x_i \coloneqq [x_i^*]$ \bigstar • Randomized rounding: $\operatorname{set} x_i = 1$ with probability x_i^*

$$\mathbb{E}\left[\sum_{i=1}^{m} x_i\right] = \sum_{i=1}^{m} \mathbb{E}\left[x_i\right] = \sum_{i=1}^{m} x_i^*$$

But is it feasible? [Further analysis on board & Panigrahi's notes]

Theorem. There is a poly-time randomized algorithm achieving $O(\log n)$ expected approximation ratio, except w. probability O(1/n).