

W'21 CS 584/684

Algorithm Design & Analysis

Fang Song

Lecture 18

• NPC

Poly-time as "feasible"

• Most natural problems either are easy (e.g., n^3) or no poly-time alg. known

Central ideas in complexity

Reduction : relating hardness ($A \le B \Rightarrow A$ no harder than B)

Classify problems by "hardness"

Definition of class P

P. Decision problems for which there is a poly-time algorithm

Problem	Description	Algorithm	YES	No
			instance	instance
Multiple	Is x a multiple of y?	Grade school	51,17	52,17
RELPRIME	Are x and y relatively prime?	Euclid (300 BCE)	34,39	34,51
PRIMES	Is x a prime?	AKS 2002	53	51
EDIT- DISTANCE	Is the edit distance between x and y less than 5?	Dynamic programming	neither either	algorithm quantum

NP. Decision problems for which there is a poly-time certifier

Definition of class NP

Idea of certifier

- Certifier checks a proposed proof π that $s \in X$
- Need not determine whether $s \in X$ on its own

N.B. |t| = p(|s|) for some polynomial p()

Def. Algorithm C(s,t) is a certifier for problem X if for every string $s, s \in X$ iff there exists a string t such that C(s,t) = yes

Equivalent def. NP = nondeterministic polynomial-time not colynomial-time

• Certificate. $t = 541 \text{ or } 809.437,669 = 541 \times 809$

Conclusion. COMPOSITES ∈ NP

■ Instance. *s* = 437,669

Certifier.

COMPOSITES. Given an integer *s*, is *s* composite?

Certifiers and certificates: Composite

Certificate: A non-trivial factor t of s.

HAM-CYCLE. Given a graph G = (V, E), does there exist a simple cycle that visits every node?

Certificate: A permutation of n nodes

Certifier.

Conclusion. HAM−Cycle ∈ NP

HAM-CYCLE-Certifier(G, σ) If $(\forall i, j, \sigma_i \neq \sigma_j \& (\sigma_i, \sigma_{i+1}) \in E)$ Return true

Certifiers and certificates: Hamiltonian cycle

Instance *s*

P,NP,EXP

P. Decision problems for which there is a poly-time algorithm **EXP**. Decision problems for which \exists an exponential-time algorithm

i.e., runs in time $O(2^{p(|s|)})$ for some polynomial p()

NP. Decision problems for which there is a poly-time certifier

• Claim. $P \subseteq NP \subseteq EXP$

- $\mathbf{P} \subseteq \mathbf{NP}$. Consider any $X \in \mathbf{P}$,
- \exists poly-time A that solves X
- Certificate: $t = \epsilon$, certifier C(s,t) = A(s)

NP \subseteq **EXP**. Consider any $X \in NP$,

- \exists poly-time certifier C(s, t)
- To decide input s, run C(s,t) on all strings t with $|t| \le p(|s|)$.
- Return yes, if C(s, t) ever says yes.

The Millennium prize problems

Open question: P = NP?

EXP

NP

• \$1 million prize

Consensus opinion on P = NP? Probably no.

Eight Signs A Claimed P≠NP Proof Is Wrong

As of this writing, Vinay Deolalikar still hasn't retracted his $P \neq NP$ (

https://www.scottaaronson.com/blog/?p=458

Millennium Problems

Yang-Mills and Mass Gap

Experiment and computer simulations suggest the existence of a "mass gap" in the no proof of this property is known.

Riemann Hypothesis

The prime number theorem determines the average distribution of the primes. Th average. Formulated in Riemann's 1859 paper, it asserts that all the 'non-obvious'

P vs NP Problem

If it is easy to check that a solution to a problem is correct, is it also easy to solve the NP problems is that of the Hamiltonian Path Problem; given N cities to visit, he solution, I can easily check that it is correct. But I cannot so easily find a solution.

Navier-Stokes Equation

This is the equation which governs the flow of fluids such as water and air. However, solutions exist, and are they unique? Why ask for a proof? Because a proof gives not give the solution of the solution

Hodge Conjecture

The answer to this conjecture determines how much of the topology of the solutio further algebraic equations. The Hodge conjecture is known in certain special case dimension four it is unknown.

Poincaré Conjecture

In 1904 the French mathematician Henri Poincaré asked if the three dimensional ϵ manifold. This question, the Poincaré conjecture, was a special case of Thurston's $_1$ three manifold is built from a set of standard pieces, each with one of eight well-ur

Birch and Swinnerton-Dyer Conjecture

Sunnorted by much experimental evidence this conjecture relates the number of

- Def. A problem Y is NP-Complete if 1. $Y \in NP$
 - 2. $\forall X \in \mathbf{NP}, X \leq_{P,Karp} Y$

NPC

Theorem. Suppose Y is NP-Complete, then Y is solvable in polytime iff. P = NP

NP-Completeness

Pf.

- (\Leftarrow) If $\mathbf{P} = \mathbf{NP}$, then Y can be solved in poly-time since $Y \in \mathbf{NP}$
- (\Rightarrow) If Y is solvable in poly-time, consider any $X \in \mathbf{NP}$. Since $X \leq_{P,Karp} Y, X$ has a poly-time algorithm as well I.e., $\mathbf{NP} \subseteq \mathbf{P} \Rightarrow \mathbf{P} = \mathbf{NP}$

Fundamental question: Are there natural NP-complete problems?

Theorem. Circuit—SAT is NP-Complete [Cook 1971,Levin 1973] Input. A combinational circuit built out of AND/OR/NOT gates Goal. Decide if there is a way to set the circuit inputs so that the output is 1?

The "first" NP-Complete problem

hard-coded inputs

inputs

2

Stephen Cook Leonid Levin

Given. Graph G

Construction. Circuit *K* whose inputs can be set so that *K* outputs true iff. graph *G* has an independent set of size 2

Example

Establishing NP-Completeness

Once we establish first "natural" NP-complete problem, others fall like dominoes ...

Recipe to establish NP-Completeness of problem Y

- I. Show that $Y \in \mathbf{NP}$
- 2. Choose an NP–complete problem *X*
- 3. Prove that $X \leq_{P,Karp} Y$

Justification. If X is an NP-complete problem, and Y is a problem in NP with the property that $X \leq_{P,Karp} Y$ then Y is NP-complete (by transitivity)

• Circuit $-SAT \le 3-SAT$

$3-SAT \leq_P INDEPENDENT-SET$ $\leq_P VERTEX-COVER \leq_P SET-COVER$

Practicing reductions

+

4

• $3-SAT \le HAM-CYCLE$

\Rightarrow They are all NP-Complete!

REDUCIB	ILITY	AMONG	CO	MBIN	ATOR	IAL	PRO	BLE	MS	
	R	ichard	м.	Kai	гp					
	Ur	niversi	ity	of	Cali	for	nia	at	Berk	ele

Richard M. Karp

https://images.app.goo.gl/pw GFyw2pp6Xmx6CB8

		_			
CHOTCHKIES RESTAURANT					
~ APPETIZERS ~					
MIXED FRUIT	2.15				
FRENCH FRIES	2.75				
SIDE SALAD	3.35				
HOT WINGS	3.55				
MOZZARELLA STICKS	4.20				
SAMPLER PLATE	5. 8 0				
- SANDWICHES -					
RARBECUE	6 55				

WED LIKE EXACTLY \$ 15.05 WORTH OF APPETIZERS, PLEASE. ... EXACTLY? UHH ... HERE, THESE PAPERS ON THE KNAPSACK PROBLEM MIGHT HELP YOU OUT. LISTEN, I HAVE SIX OTHER TABLES TO GET TO -- AS FAST AS POSSIBLE, OF COURSE. WANT SOMETHING ON TRAVELING SALESMAN? ₩

MY HOBBY:

EMBEDDING NP-COMPLETE PROBLEMS IN RESTAURANT ORDERS

https://xkcd.com/287/

For each of the following statements, decide T/F/Unknown.

- a) All problems in **P** can be solved in n^{2019} time.
- b) If a problem is in NP, then it cannot be solved in n^{2019} time.
- c) If a problem is NP-Complete, then the best algorithm for it takes $2^{\Omega(n)}$ time.

Quiz

d) There exists a problem in NP but not in P.

Theorem. 3–SAT is NP-Complete Pf. We show Circuit–SAT $\leq_P 3$ –SAT

- Given a circuit *K*, create a 3-SAT variable x_i for each gate
- Make circuit compute correct values at each node

$$\begin{array}{l} x_2 = \neg x_3 \\ x_1 = x_4 \lor x_5 \\ x_0 = x_1 \land x_2 \end{array} \xrightarrow[]{\Rightarrow} (x_2 \lor x_3) \land (\overline{x_2} \lor \overline{x_3}) \\ \Rightarrow (x_1 \lor \overline{x_4}) \land (x_1 \lor \overline{x_5}) \land (\overline{x_1} \lor x_4 \lor x_5) \\ \Rightarrow (\overline{x_0} \lor x_1) \land (\overline{x_0} \lor x_2) \land (x_0 \lor \overline{x_1} \lor \overline{x_2}) \end{array}$$

$$x_{1} \bigvee \neg x_{2}$$

$$x_{5} \bigcirc 0$$

$$x_{1} \bigvee \neg x_{2}$$

$$x_{4} \bigcirc x_{3}$$

Circuit *K* satisfiable iff. ∃ assignment satisfying all clauses constructed

- Hard-coded input values and output value $x_5 = 0 \Rightarrow \overline{x_5}$ $x_0 = 1 \Rightarrow x_0$
- Final step: turn clauses into exactly 3 literals by adding dummy variables EX. $x_1 \lor x_2 \Rightarrow (x_1 \lor x_2 \lor y) \land (x_1 \lor x_2 \lor \overline{y})$

3–SAT is NP-Complete

! Don't forget to show $3-SAT \in NP$

(DIR–)HAM–CYCLE. Given a directed graph G = (V, E), does there exist a directed cycle Γ that visits every node exactly once?

(DIR-)HAM-CYCLE is NP-Complete

Theorem. $3-SAT \leq_P (DIR-)HAM-CYCLE$

Pf. Given 3–SAT instance Φ in CNF: *n* variables x_i and *k* clauses C_i

Intuition: traverse row *i* from left to right \Leftrightarrow set variable x_i = true

Claim. Φ is satisfiable iff. G has a Hamiltonian cycle

(⇒) Suppose Φ has a satisfying assign. x^* . Define an H-Cycle in G:

 $3-SAT \leq_P (DIR-)HAM-CYCLE$

- if x_i^* = true, traverse row x_i from left to right
- if $x_i^* = \text{false}$, traverse row x_i from right to left
- For each clause C_i pick (only) one row *i* and take a detour \bigcirc

(\Leftarrow) Suppose G has a H-Cycle Γ . Define a satisfying assign. in Φ :

- In Γ , replace edges going/leaving C_j with the edge of the corresponding two nodes in some row. This gives a new cycle Γ' in $G \{C_1, C_2, \dots, C_k\}$
- In Γ' , set x_i = true if Γ' traverses row *i* left-to-right; set x_i = false otherwise

• Aerospace engineering: optimal mesh partitioning for finite elements.

Hard computational problems cont'd

- Chemical engineering: heat exchanger network synthesis
- Civil engineering: equilibrium of urban traffic flow
- Electrical engineering:VLSI layout.
- Mechanical engineering: structure of turbulence in sheared flows
- Biology: protein folding
- Physics: partition function of 3-D Ising model in statistical mechanics.
- Economics: computation of arbitrage in financial markets with friction
- Financial engineering: find minimum risk portfolio of given return
- Politics: Shapley-Shubik voting power
- Pop culture: Sudoku (<u>http://www-imai.is.s.u-tokyo.ac.jp/~yato/data2/SIGAL87-2.pdf</u>)

Computers and Intractability: A Guide to the Theory of NP-Completeness. Michael Garey and David S. Johnson

Want to learn more?

Most Cited Computer Science Citations

This list is generated from documents in the CiteSeer^x database as of March 19, 2015. This list is automaticall mode and citation counts may differ from those currently in the CiteSeer^x database, since the database is con All Years | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 20 | 2015

 M R Garey, D S Johnson Computers and Intractability: A Guide to the Theory of NPCompleteness" W.H. Feeman and 1979 11468

Computational Complexity: A Modern Approach Sanjeev

Arora & Boaz Barak

