@ Portland State University

----------------------------------------------------

W21 CS 584/684 Lecture 13

Algorithm Design & © NPC

Analysis

____________________________________________________

----------------------------------------------------

____________________________________________________



Central ideas in complexity

=/Poly-time as “feasible”
e Most natural problems either are easy (e.g., n3) or no poly-time alg. known

*Reduction : relating hardness (A < B = A no harder than B)

= Classity problems by “hardness”




Definition of class P

P. Decision problems for which there is a poly-time algorithm

Problem Description Algorithm YES No
instance | instance

Multiple Is x a multiple of y? Grade school 51,17 52,17
RELPRIME Are x and y relatively prime? Euclid (300 34,39 34,51
BCE)
PRIMES Is x a prime? AKS 2002 53 51
EDIT- Is the edit distance between Dynamic neither algorithm

DISTANCE x and y less than 5? programming either quantum



Definition of class NP

NP. Decision problems for which there is a poly-time certifier

|dea of certifier

* Certifier checks a proposed proof i that s € X
* Need not determine whether s € X on its own

N.B. |[t| = p(|s]) for
some polynomial p()

Def. Algorithm C(s,t) is a certifier for em X if for every string
s, s € X iff there exists a string t such that C(s, t) = yes

Equivalent def. NP = nondeterministic polynomial—time

not }olynomial—time



Certifiers and certificates: Composite

COMPOSITES. Given an integer s, is s composite?

= Certificate: A non-trivial factor t of s. CompositesCertifier(s,t)
. If(t<1lort=-s)
= Certifier. Return false
Else if (s is a multiple of t)
Return true

Blse

» [nstance. s = 437,669 Return false
 Certificate.t = 541 or 809.437,669 = 541x809

Conclusion. COMPOSITES € NP



Certifiers and certificates: Hamiltonian cycle

HAM—CYCLE. Given a graph ¢ = (V,E), does there exist a simple
cycle that visits every node?

= Certificate: A permutation of n nodes HAM-CYCLE-Certifier(G, o)

If (Vi,j,0; # 0j &(0,0i41) €E E)
Return true

» Certifier.

Conclusion. HAM—Cycle € NP

Instance s

Certificate t




P.NP,EXP

P. Decision problems for which there is a poly-time algorithm
EXP. Decision problems for which 3 an exponential-time algorithm

i.e., runs in time 0(2PUsD) for some polynomial p()

NP. Decision problems for which there is a poly-time certifier
= Claim. P € NP € EXP

P € NP. Consider any X € P, NP € EXP. Consider any X € NP,

* 3 poly—time A that solves X * 3 poly—time certifier C(s,t)

* Certificate: t = ¢, certifier * To decide input s,run C(s,t) on all
C(s,t) = A(s) strings t with [t| < p(|s]).

* Return yes,if C(s,t) ever says yes.



Open question: P = NP?

>4 | he Millennium prize problems

CMI

* $1 million prize

= Consensus opinion on P = NP? Probably no.

Eight Signs A Claimed P=NP Proof Is Wrong

As of this writing, Vinay Deolalikar still hasn’t retracted his P+NP «

https://www.scottaaronson.com/blog/?p=458

Millennium Problems

Yang-Mills and Mass Gap
Experiment and computer simulations suggest the existence of a "mass gap" in the
no proof of this property is known.

Riemann Hypothesis

The prime number theorem determines the average distribution of the primes. Th:
average. Formulated in Riemann's 1859 paper, it asserts that all the 'non-obvious'

P vs NP Problem

If it is easy to check that a solution to a problem is correct, is it also easy to solve tr
the NP problems is that of the Hamiltonian Path Problem: given N cities to visit, hc
solution, | can easily check that it is correct. But | cannot so easily find a solution.

Navier-Stokes Equation

This is the equation which governs the flow of fluids such as water and air. Howeve
solutions exist, and are they unique? Why ask for a proof? Because a proof gives nc

Hodge Conjecture

The answer to this conjecture determines how much of the topology of the solutio
further algebraic equations. The Hodge conjecture is known in certain special case
dimension four it is unknown.

Poincaré Conjecture

In 1904 the French mathematician Henri Poincaré asked if the three dimensional ¢
manifold. This question, the Poincaré conjecture, was a special case of Thurston's §
three manifold is built from a set of standard pieces, each with one of eight well-ur

Birch and Swinnerton-Dyer Conjecture

Ciinnartad hv miich avid thic iartiira ralatac tha niimhar Af

7



https://www.scottaaronson.com/blog/?p=458

NP-Completeness

Def. A problem Y is NP-Complete if
1. Y € NP
2. VX ENP, X <pyarp ¥

Theorem. Suppose Y is NP-Complete, then Y is solvable in poly-
time iff. P = NP

Pf.
* (<) If P = NP, then Y can be solved in poly-time since Y € NP
* (=) If Y is solvable in poly-time, consider any X € NP.

Since X <p garp Y, X has a poly-time algorithm as well
.,e,NPCS P=> P =NP

Fundamental question: Are there natural NP-complete problems?
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The "first" NP-Complete problem

Theorem. Circuit—SAT is NP-Complete [Cook 1971,Levin 1973]

Input. A combinational circuit built out of AND/OR/NOT gates

Goal. Decide if there is a way to set the circuit inputs so that the
output is 17

Al s

1 0 ? ? @ N
hard-coded inputs inputs Stephen Cook Leonid Levm
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Example

Given. Graph G

Construction. Circuit K whose inputs can be set so that K outputs
true iff. graph G has an independent set of size 2

________________________________________________________

Are the two nodes
' chosen connected

- @ by an edge

G=U,E)yn=3

________________________________________________________

n . n inputs
(2) hard-coded inputs (nodes in
(graph description) » indep. set)
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Establishing NP-Completeness

Once we establish first "natural” NP-complete problem, others fall
like dominoes ...

Recipe to establish NP-Completeness of problem Y

|. Show that Y € NP
2. Choose an NP—complete problem X

3. Provethat X <pgqrp Y

Justification. If X is an NP-complete problem, and Y is a problem
in NP with the property that X <p x4, Y then Y is NP-complete (by
transitivity)

11



Practicing reductions

= Circuit—SAT < 3—SAT + 3—SAT <p, INDEPENDENT—-SET
<p VERTEX—COVER <, SET—COVER

= 3—SAT < HAM—CYCLE

3
/ SATISFIABILIH\

CLIQUE 0-1 INTEGER SATISFIABILITY WITH AT

|
= Th ey dalre a | | N P_CO m p | ete! piecel SR CHROMATIIC NUMBER

FEEDBACK FEEDBACK DIR$

PROGRAMMING MOST 3 LITERALS PER CLAUSE

U SET EXACT CLIQUE
REDUCIBILITY AMONG COMBINATORIAL PROBLEMS NODE SET ARC SET HAMILTON COVERING COVER COVER
CIRCUIT
_ 3—D1ﬁgi;gNAL KRATLECE TgNG s;‘EégER
UNDIRECTED MA S R
i i HAMILTON
Richard M. Karp CIRCUI
N University of California at Berkeley SEQUENCING PARTITION
. Ed
i a
‘> MAX CUT I
, =~
3 o
b FIGURE 1 - Complete Probl E
lmm IGURE - Complete Problems =
=
-l

Richard M. Karp
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D ARSI SOAP D ZARS/SUD D CARS

Al Basa

rbe TForry “Thieves

SSIPZ AR SHAPZ S AN

https://images.app.goo.gl/pw
GFyw2pp6Xmx6CB8

MY HOBBY:
EMBEDDING NP-(DMPLETE PROBLEMS IN RESTAURANT ORDERS

{ C H OTCHK\ES RESTAURA qu

‘/‘“ﬂPPE'nZERS ~
MIXED FRUIT 2.15
FRENCH FRIES 2.75
SIDE SALAD 3.35
HOT WINGS 3.55

MOZZARELLA STI(XS  4.20
SAMPLER PLATE 5.80 #

—— SANDWICHES ~—

WED LIKE EXACTLY §15. 05
WORTH OF APPETIZERS, PLEASE.

\ . EXACTLY?  UHH..

HERE, THESE PAPERS ON THE KNAPSACK
PROBLEM MIGHT HELP YOU OUT.

LISTEN, I HAVE Six OTHER
TABLES TO GET T0 -

—AS FRAST AS POSSIBLE, (OF (DURSE. WANT
SOMETHING ON Tansum SALESNAN?

r%%%%

RARRENILE L 6T

https://xkcd.com/287/
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Quiz

For each of the following statements, decide T/F/Unknown.
a) All problems in P can be solved in n%%1° time.

b) If a problem is in NP, then it cannot be solved in n2°1° time.

c) If a problem is NP—Complete, then the best algorithm for it takes 2™ time.
d) There exists a problem in NP but not in P.
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3—SAT is NP-Complete

Theorem. 3—SAT is NP-Complete X0
Pf. We show Circuit—SAT <, 3—SAT

* Given a circuit K, create a 3—SAT variable x; for each gate
* Make circuit compute correct values at each node Xs X4 O X3

Xy = X = (xz Vx3) A (X3 V X3)
X =xgVxs S VEDAQ V) AGT VX VXs) L assignment
Xo = X1 /A X2 = (X V) AlxgVxa) A(xpVxgVxy) sa.tisfying all

* Hard-coded input values and output value clauses constructed
xc = 0= Xxg xo=1=x

Circuit K satisfiable

* Final step: turn clauses into exactly 3 literals by adding dummy variables
EX.x; VX, 2 (X VX, VY)A (X1 VX VYY)

| Don't forget to show 3—SAT € NP
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(DIR—)HAM—CYCLE is NP-Complete

(DIR—)HAM~—CYCLE. Given a directed graph G = (V, E), does there
exist a directed cycle I that visits every node exactly once?

Theorem. 3—SAT <, (DIR—)HAM—CYCLE
Pf. Given 3—SAT instance ® in CNF: n variables x; and k clauses C;

]

Intuition: traverse row i from left to right & set variable x; = true

16



3—SAT <, (DIR—)HAM—CYCLE

Ci =x1VXy VX3 [+ Cz=x1Vx2Vx3}
N 7

Claim. @ is satistfiable iff. G has a Hamiltonian cycle



3—SAT <, (DIR—)HAM—CYCLE

Claim. @ is satistfiable iff. G has a Hamiltonian cycle

(=) Suppose @ has a satisfying assign. x*. Define an H-Cycle in G:
e if x; = true, traverse row x; from left to right
« if x; = false, traverse row x; from right to left

* For each clause (; pick (only) one row i and take a detour

(<) Suppose G has a H-Cycle I'. Define a satisfying assign. in &:

* In T, replace edges going/leaving C; with the edge of the corresponding two nodes
in some row. This gives a new cycle I in G — {C;, C5, ..., Ci}

 In T, set x; = true if I'" traverses row i left-to-right; set x; = false ¢

_____________
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Hard computational problems cont’d

* Aerospace engineering: optimal mesh partitioning for finite elements.

Chemical engineering: heat exchanger network synthesis

Civil engineering: equilibrium of urban traffic flow

Electrical engineering:VLSI layout.

Mechanical engineering: structure of turbulence in sheared flows
Biology: protein folding

Physics: partition function of 3-D Ising model in statistical mechanics.
Economics: computation of arbitrage in financial markets with friction
Financial engineering: find minimum risk portfolio of given return
Politics: Shapley-Shubik voting power

POP culture: Sudoku (http://www-imai.is.s.u-tokyo.ac.jp/~yato/data2/SIGAL87-2.pdf)

(6]

|00

—

(6]
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http://www-imai.is.s.u-tokyo.ac.jp/~yato/data2/SIGAL87-2.pdf

Want to learn more?

————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————

mm Computers and Intractability: A Guide |

COMPUTERS AND INTRACTABILITY

| ELLnetEl Computational
to the Theory of NP-Completeness. | EuDUEE Complexity: A
Michael Garey and David S. Johnson I M
, ‘ , — odern Approach
Most Cited Computer Science Citations .
Sanjeev

Arora & Boaz Barak

A Guide to the Theory of NP-Completeness

This list is generated from documents in the CiteSeer* database as of March 19, 2015. This list is automaticall
mode and citation counts may differ from those currently in the CiteSeer* database, since the database is con'
All Years | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 20!
| 2015

. MR Garey, D S Johnson
Computers and Intractability: A Guide to the Theory of NPCompleteness” W.H. Feeman and 1979
11468

Sanjeev Arora
and Boaz Barak
Canmmser

-

__________________________________________________________________________________________________________

Complexity Zoo
There are now 544
classes and counting!

TCo



https://en.wikipedia.org/wiki/Michael_Garey
https://en.wikipedia.org/wiki/David_S._Johnson
http://www.cs.princeton.edu/~arora/
http://www.boazbarak.org/
https://complexityzoo.uwaterloo.ca/Complexity_Zoo

