
W’21 CS 584/684

Algorithm Design &
Analysis

Lecture 17

• Reductions
• P vs. NP

Portland State University

Fang Song

Recall: polynomial-time reduction

1

§Def. Problem 𝑋 polynomial reduces to Problem 𝑌 if arbitrary
instance of 𝑋 can be solved using:
• Polynomial number of standard computation steps
• & polynomial number of calls to oracle that solves 𝐴

Notation. 𝑋 ≤!,#$$% 𝑌 (or 𝑋 ≤! 𝑌)
! Mind your direction, don’t confuse 𝑋 ≤! 𝑌 with 𝑌 ≤! X

Simplification: decision problems

2

§ Search problem. Find some structure.
• Example. Find a minimum cut.

§Decision problem.
• Problem 𝑋 is a set of strings [e.g., strings that encode graphs containing a triangle]
• Instance: string 𝑠 [e.g., encoding of a graph]
• YES instance: 𝑠 ∈ 𝑋; NO instance: 𝑠 ∉ 𝑋
• Algorithm 𝐴 solves problem 𝑋: 𝐴 𝑠 = 𝑦𝑒𝑠 iff. s ∈ 𝑋
• Ex. Does there exist a cut of size ≤ 𝑘?

Polynomial-time transformation

3

§Karp reduction. (Decision) problem 𝑋 polynomial transforms to
Problem 𝑌 if given any 𝑥, we can construct 𝑦 such that
• size 𝑦 = 𝑝𝑜𝑙𝑦(|𝑥|)
• 𝑥 ∈ 𝑋 iff. 𝑦 ∈ 𝑌. 𝑋 ≤!,&'() 𝑌

Polynomial-time reduction vs. transformation

4

𝑋 ≤!,#$$% 𝑌 𝑋 ≤!,&'() 𝑌

N.B. Polynomial transformation is polynomial reduction with just
one call to oracle for 𝑌, exactly at the end of the algorithm for 𝑋.
Open question. Are these two concepts equivalent?

Cook (Turing) reduction vs. Karp reduction

(Decision problems)

𝑋 slover

𝑌 slover

𝑥

𝑥′
𝑏 ∈ {0,1}𝑏

𝑋 slover𝑥

𝑦
𝑌 slover

𝑥"′
𝑦"′

Standard comp.

Basic reduction strategies

§ Reduction by simple equivalence

§ Reduction from special case to general case

§ Reduction by encoding with gadgets

5

Independent set

Input. Graph 𝐺 = (𝑉, 𝐸) and an integer 𝑘
• Independent set 𝑆 ⊆ 𝑉: subset of vertices such that for each edge at most one of

its endpoints is in 𝑆
Goal. Decide if there is an independent set 𝑆 with S ≥ 𝑘

6

independent set

• Is there an independent set of size ≥ 6? J

L• Is there an independent set of size ≥ 7?

Vertex cover

Input. Graph 𝐺 = (𝑉, 𝐸) and an integer 𝑘
• Vertex cover 𝑆 ⊆ 𝑉: subset of vertices such that for each edge at least one of its

endpoints is in 𝑆
Goal. Decide if there is an vertex cover 𝑆 with S ≤ 𝑘

7

Vertex cover

• Is there an vertex cover of size ≤ 4? J

L• Is there an independent set of size ≤ 3?

Independent set and Vertex cover

Claim. VERTEX−COVER ≡! INDEPENDENT−SET
Pf. We show 𝑆 is an independent set iff. 𝑉\𝑆 is a vertex cover

8

independent set

vertex cover

Independent set and Vertex cover

Claim. VERTEX−COVER ≡! INDEPENDENT−SET
Pf. We show 𝑆 is an independent set iff. 𝑉\𝑆 is a vertex cover

9

≤ (⇐) Let 𝑆 be any independent set
• Consider an arbitrary edge (𝑢, 𝑣)
• 𝑆 independent ⇒ 𝑢 ∉ 𝑆 or 𝑣 ∉ 𝑆 ⇒ 𝑢 ∈ 𝑉\𝑆 or 𝑣 ∈ 𝑉\𝑆
• Thus 𝑉\S covers (𝑢, 𝑣)

independent set

vertex cover

≥ (⇒) Let 𝑉\𝑆 be any vertex cover
• Consider two nodes 𝑢 ∈ 𝑆 and 𝑣 ∈ 𝑆
• Observe that 𝑢, 𝑣 ∉ 𝐸 since 𝑉\𝑆 is a vertex cover
• Thus no two nodes in 𝑆 are joined by an edge
⇒ 𝑆 is an independent set

Basic reduction strategies

§ Reduction by simple equivalence
• VERTEX−COVER ≡# INDEPENDENT−SET

§ Reduction from special case to general case

§ Reduction by encoding with gadgets

10

Input. Set 𝑈 of 𝑛 elements, 𝑆*, … , 𝑆+ of subsets of 𝑈, integer 𝑘
Goal. Decide if there is a collection of ≤ 𝑘 of these sets whose
union is equal to 𝑈

Set cover

11

Sample application.
• Set 𝑈 of 𝑛 capabilities that our computer system needs to have.
• 𝑚 available pieces of software, 𝑖th software provides the set 𝑆" ⊆ 𝑈 capabilities.
• Goal: achieve all 𝑛 capabilities using fewest pieces of software.

43

56
7

1
2

𝑈𝑈 = {1,2,3,4,5,6,7}
𝑘 = 2
𝑆$ = 3,7 , 𝑆% = 3,4,5,6
𝑆& = 1 , 𝑆' = 2,4
𝑆(= 5 , 𝑆) = 1,2,6,7

Vertex cover reduces to set cover

12

𝑈 = {1,2,3,4,5,6,7}
𝑘 = 2
𝑆* = 3,7 , 𝑆+ = 3,4,5,6
𝑆, = 1 , 𝑆- = 2,4
𝑆. = 5 , 𝑆/ = 1,2,6,7

Claim. VERTEX−COVER ≤! SET−COVER
Pf. Given a VERTEX−COVER instance 𝐺 = ⟨ 𝑉, 𝐸 , 𝑘⟩, we construct a
SET−COVER instance whose solution size equals the size of the
VERTEX−COVER instance
Reduction: on input ⟨𝐺 = 𝑉, 𝐸 , 𝑘⟩
Output: // a SET-COVER instance

𝑘 = 𝑘, 𝑈 = 𝐸, 𝑆0 = 𝑒 ∈ 𝐸: 𝑒 incident to 𝑣 for	every	𝑣 ∈ 𝑉

⇒

b

d

c

a

e

f

𝑘 = 2
𝑒! 𝑒" 𝑒# 𝑒$

𝑒%𝑒&
𝑒'

Basic reduction strategies

§ Reduction by simple equivalence
• VERTEX−COVER ≡# INDEPENDENT−SET

§ Reduction from special case to general case
• VERTEX−COVER ≤# SET−COVER

§ Reduction by encoding with gadgets

13

§ Literal: A Boolean variable or its negation 𝑥4 or 𝑥4
§Clause: A disjunction (OR) of literals 𝐶5 = 𝑥* ∨ 𝑥6 ∨ 𝑥7
§Conjunctive normal form: A propositional formula that is

conjunction (AND) of clauses Φ = 𝐶* ∧ 𝐶6 ∧ ⋯∧ 𝐶+

Satisfiability

14

SAT. Given CNF formula Φ, is there a satisfying truth assignment?

3-SAT. SAT where each clause contains exactly 3 literals

EX. 𝑥$ ∨ 𝑥% ∨ 𝑥& ∧ 𝑥$ ∨ 𝑥% ∨ 𝑥& ∧ 𝑥% ∨ 𝑥& ∧ (𝑥$ ∨ 𝑥% ∨ 𝑥&)
YES. 𝑥$ = true, 𝑥% = true, 𝑥& = false

Reducing 3-SAT to independent set

15

Claim. 3−SAT ≤! INDEPENDENT−SET
Pf. Given a 3−SAT instance Φ, we construct an INDEPENDENT−SET
instance (𝐺, 𝑘) that has an ind. set of size 𝑘 iff. Φ is satisfiable.
Reduction: on input Φ
Let 𝐺 contain 3 vertices for each clause,
one for each literal

Connect 3 literals in a clause in a triangle
Connect literal to each of its negations
𝑘 = |Φ| \\ 𝑘=# clauses in Φ
Output: ⟨𝐺, 𝑘⟩

Φ = 𝑥$ ∨ 𝑥% ∨ 𝑥& ∧ 𝑥$ ∨ 𝑥% ∨ 𝑥& ∧ (𝑥$ ∨ 𝑥% ∨ 𝑥')𝑘 = 3

⇒

𝑥"

𝑥&

𝑥&

𝑥"

𝐺

𝑥# 𝑥& 𝑥#

𝑥"

𝑥$

3-SAT reduces to independent set

16

Claim. 3−SAT ≤! INDEPENDENT−SET
Pf. Given a 3−SAT instance Φ, we construct an INDEPENDENT−SET
instance (𝐺, 𝑘) that has an ind. set of size 𝑘 iff. Φ is satisfiable.

𝑥"

𝑥&

𝑥&

𝑥"

𝐺

𝑥# 𝑥& 𝑥#

𝑥"

𝑥$

⇒ Let 𝑆 be an independent set of size 𝑘
• 𝑆 must contain exactly one vertex in each triangle
• Set these literals true (make others consistent)
àA valid assignment & all clauses satisfied

⇐ Given satisfying assignment
• Select one true literal from each triangle
àAn independent set of size 𝑘

Reflection on reductions
§Basic reduction strategies
• Reduction by simple equivalence
• Reduction from special case to general case
• Reduction by encoding with gadgets

17

Transitivity. If 𝑋 ≤! 𝑌 and 𝑌 ≤! 𝑍, then 𝑋 ≤! 𝑍
Proof idea. Compose two reduction algorithms

è3-SAT ≤! INDEPENDENT-SET ≤! VERTEX-COVER ≤! SET-COVER

Central ideas in complexity

§ Poly-time as “feasible”
• Most natural problems either are easy (e.g., 𝑛&) or no poly-time alg. known

18

§Classify problems by “hardness”
§ Reduction : relating hardness (𝐴 ≤ 𝐵 ⇒ 𝐴 no harder than 𝐵)

✓

✓

Self reducibility

Decision problem. Does there exist a vertex cover of size ≤ 𝑘?
Search problem. Find vertex cover of minimum cardinality.

19

Self-reducibility. Search problem ≤! decision version
• Applies to all (NP-complete) problems in this chapter
• Justifies our focus on decision problems

Definition of class 𝐏
𝐏.Decision problems for which there is a poly-time algorithm

20

Problem Description Algorithm YES
instance

No
instance

Multiple Is 𝑥 a multiple of 𝑦? Grade school 51,17 52,17
RELPRIME Are 𝑥 and 𝑦 relatively prime? Euclid (300

BCE)
34,39 34,51

PRIMES Is 𝑥 a prime? AKS 2002 53 51
EDIT-

DISTANCE
Is the edit distance between

𝑥 and 𝑦 less than 5?
Dynamic

programming
neither
either

algorithm
quantum

Definition of class 𝐍𝐏
𝐍𝐏.Decision problems for which there is a poly-time certifier

21

Idea of certifier
• Certifier checks a proposed proof 𝜋 that 𝑠 ∈ 𝑋
• Need not determine whether 𝑠 ∈ 𝑋 on its own

Def. Algorithm 𝐶(𝑠, 𝑡) is a certifier for problem 𝑋 if for every string
𝑠, 𝑠 ∈ 𝑋 iff there exists a string 𝑡 such that 𝐶(𝑠, 𝑡) = yes

N.B. 𝑡 = 𝑝(|𝑠|) for
some polynomial 𝑝()

Equivalent def. 𝐍𝐏 = nondeterministic polynomial−time
not polynomial−time✘

Certifiers and certificates: Composite

COMPOSITES. Given an integer 𝑠, is 𝑠 composite?

22

§Certificate: A non-trivial factor 𝑡 of 𝑠.
§Certifier.

CompositesCertifier(s,t)
If (𝑡 ≤ 1 or 𝑡 ≥ 𝑠)

Return false
Else if (𝑠 is a multiple of 𝑡)

Return true
Else

Return false§ Instance. 𝑠 = 437,669
• Certificate. 𝑡 = 541 𝑜𝑟 809. 437,669 = 541×809

Conclusion. COMPOSITES ∈ 𝐍𝐏

Instance 𝑠

Certifiers and certificates: Hamiltonian cycle

HAM−CYCLE. Given an undirected graph 𝐺 = (𝑉, 𝐸), does there
exist a simple cycle that visits every node?

23

§Certificate: A permutation of 𝑛 nodes

§Certifier.
HAM-CYCLE-Certifier(𝐺, 𝜎)
If (∀𝑖, 𝑗, 𝜎" ≠ 𝜎1 & 𝜎", 𝜎"2$ ∈ 𝐸)

Return true
Conclusion. HAM−Cycle ∈ 𝐍𝐏

Certificate 𝑡

P,NP,EXP

𝐏.Decision problems for which there is a poly-time algorithm
𝐄𝐗𝐏.Decision problems for which ∃ an exponential-time algorithm

24

§Claim. 𝐏 ⊆ 𝐍𝐏 ⊆ 𝐄𝐗𝐏

i.e., runs in time O(2!(|$|)) for some polynomial 𝑝()

𝐍𝐏. Decision problems for which there is a poly-time certifier

𝐏 ⊆ 𝐍𝐏. Consider any 𝑋 ∈ P,
• ∃ poly−time 𝐴 that solves 𝑋
• Certificate: 𝑡 = 𝜖, certifier
𝐶 𝑠, 𝑡 = 𝐴(𝑠)

𝐍𝐏 ⊆ 𝐄𝐗𝐏. Consider any 𝑋 ∈ NP,
• ∃ poly−time certifier 𝐶(𝑠, 𝑡)
• To decide input 𝑠, run 𝐶(𝑠, 𝑡) on all

strings 𝑡 with 𝑡 ≤ 𝑝(|𝑠|).
• Return yes, if 𝐶(𝑠, 𝑡) ever says yes.

Open question: 𝐏 = 𝐍𝐏?

25

The Millennium prize problems
• $1 million prize

𝐍𝐏
𝐄𝐗𝐏

𝐏

§Consensus opinion on P = NP? Probably no.

https://www.scottaaronson.com/blog/?p=458

https://www.scottaaronson.com/blog/?p=458

