@ Portland State University

----------------------------------------------------

W21 CS 584/684 Lecture 17

e Reductions

Algorithm Design & . Pus.NP

Analysis

____________________________________________________

----------------------------------------------------

____________________________________________________



Recall: polynomial-time reduction

= Def. Problem X polynomial reduces to Problem Y if
instance of X can be solved using:

* Polynomial number of standard computation steps
* & polynomial number of calls to that solves A

Notation. X SP,COOk Y (Or X Sp Y)

! Mind your direction, don’t confuse X <p Y with ¥ <p X



Simplification: decision problems

= Search problem. Find some structure.
* Example. Find a minimum cut.

= Decision problem.
* Problem X is a set of strings [e.g., strings that encode graphs containing a triangle]
* Instance: string s [e.g., encoding of a graph]
* YES instance: s € X; NO instance:s € X
* Algorithm A solves problem X: A(s) = yes iff. s € X
* Ex. Does there exist a cut of size < k?



Polynomial-time transformation

= Karp reduction. (Decision) problem X polynomial transforms to
Problem Y if given any x, we can construct y such that

* size |y| = poly(|x|)
° XEXiff.yEY. XSP,Kan Y




Polynomial-time reduction vs. transformation

reduction vs. reduction
X <pcook Y X <P Karp Y (Decision problems)
X XSIOVer _____ - x X slover
| Standard comp. -
/ s

5 Y sl T x|

Sy SOYE b b €{0,1}| Y slover
.Y

N.B. Polynomial transformation is polynomial reduction with just
one call to oracle for Y, exactly at the end of the algorithm for X.

Open question. Are these two concepts equivalent?



Basic reduction strategies

= Reduction by simple equivalence

= Reduction from special case to general case

» Reduction by encoding with gadgets




Independent set

Input. Graph G = (V,E) and an integer k

* Independent set S € V:subset of vertices such that for each edge at most one of
its endpoints is in S

Goal. Decide if there is an independent set S with [S| = &

O independent set

* |s there an independent set of size = 67 ©

* Is there an independent set of size > 7? ©




Vertex cover

Input. Graph G = (V,E) and an integer k

* Vertex cover S € V:subset of vertices such that for each edge at least one of its
endpoints is in S

Goal. Decide if there is an vertex cover S with |S| < k

O Vertex cover

* |s there an vertex cover of size < 47 ©

* Is there an independent set of size < 3?7 ©




Independent set and Vertex cover

Claim. VERTEX—COVER =, INDEPENDENT—SET
Pf. We show S is an independent set iff. V\S is a vertex cover

O independent set

O vertex cover




Independent set and Vertex cover

Claim. VERTEX—COVER =, INDEPENDENT—SET
Pf. We show S is an independent set iff. I\S is a vertex cover

< (<) Let S be any independent set (O independent set
* Consider an arbitrary edge (u, v) O vertex cover
* Sindependent=>u&€SorvéES=>u€elV\SorveV\S
* Thus I'\S covers (u, v)

> (=) Let V\S be any vertex cover
 Consider twonodesu € Sandv € S
* Observe that (u,v) € E since V\S is a vertex cover
* Thus no two nodes in S are joined by an edge
= S is an independent set




Basic reduction strategies

= Reduction by simple equivalence
* VERTEX—COVER =p INDEPENDENT—-SET

= Reduction from special case to general case

» Reduction by encoding with gadgets
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Set cover

Input. Set U of n elements, S, ..., S, of subsets of U, integer k

Goal. Decide if there is a collection of < k of these sets whose
union is equal to U

U ={1,2,3,4,5,6,7

k=2 |
$1={37}, [S5,={3456} @

553 = {1}, S4 =12,4} @ @ @

S.={5}, IS.={1267)

Sample application.
* Set U of n capabilities that our computer system needs to have.
* m available pieces of software, ith software provides the set S; © U capabilities.
* Goal: achieve all n capabilities using fewest pieces of software.
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Vertex cover reduces to set cover

Claim. VERTEX—COVER <, SET—COVER

Pf. Given a VERTEX—COVER instance G = ((V,E), k), we construct a
SET—COVER instance whose solution size equals the size of the

VERTEX—COVER instance
Reduction: on input (G = (V,E), k)
Output: // a SET-COVER instance
k=k U=E,S, ={e€E:eincident to v} foreveryv € V

_________________________________________________________________________________

____________________________________________________________________________________
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Basic reduction strategies

= Reduction by simple equivalence
* VERTEX—COVER =p INDEPENDENT—-SET

= Reduction from special case to general case
* VERTEX—COVER <p SET—COVER

» Reduction by encoding with gadgets
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Satisfiability

= Literal: A Boolean variable or its negation x; or x;
= Clause: A disjunction (OR) of literals C; = x; VX, V x5

= Conjunctive normal form: A propositional formula that is
conjunction (AND) of clauses ® = C; AC, A+ A Gy,

SAT. Given CNF formula @, is there a satisfying truth assignment?

EX. (X3 VxaVx3) AN(xy VX V) A Vag) A(xg VX, Vix3)
YES. x; = true, x, = true, x5 = false

3-SAT. SAT where each clause contains exactly 3 literals
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Reducing 3-SAT to independent set

Claim. 3—SAT <, INDEPENDENT—SET

Pf. Given a 3—SAT instance ®, we construct an INDEPENDENT—SET
instance (G, k) that has an ind. set of size k iff. d is satisfiable.

Reduction: on input ¢
Let ¢ contain 3 vertices for each clause,
one for each literal
Connect 3 literals in a clause in a triangle
Connect literal to each of its negations
k = |®| \\ k=# clauses in @
Output: (G, k)

k =3 D= VxyVx3) A(xy VX, Vx3) A(X{V Xy V Xy)
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3-SAT reduces to independent set

Claim. 3—SAT <, INDEPENDENT—SET

Pf. Given a 3—SAT instance ®, we construct an INDEPENDENT—SET
instance (G, k) that has an ind. set of size k iff. ® is satisfiable.

= Let S be an independent set of size k
* S must contain exactly one vertex in each trlangle
* Set these literals true (make others consistent)
—> A valid assignment & all clauses satisfied

< Given satisfying assignment
* Select one true literal from each triangle
—> An independent set of size k
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Reflection on reductions

» Basic reduction strategies
* Reduction by simple equivalence
* Reduction from special case to general case
* Reduction by encoding with gadgets

Transitivity. If X <p, Yand Y <, Z, then X <, Z
Proof idea. Compose two reduction algorithms

- 3-SAT <, INDEPENDENT-SET <, VERTEX-COVER <, SET-COVER
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Central ideas in complexity

=/Poly-time as “feasible”
e Most natural problems either are easy (e.g., n3) or no poly-time alg. known

*Reduction : relating hardness (A < B = A no harder than B)

= Classity problems by “hardness”
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Self reducibility

Decision problem. Does there exist a vertex cover of size < k?
Search problem. Find vertex cover of minimum cardinality.

Self-reducibility. Search problem <, decision version
* Applies to all (NP-complete) problems in this chapter
* Justifies our focus on decision problems
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Definition of class P

P. Decision problems for which there is a poly-time algorithm

Problem Description Algorithm | YES No
instance | instance

Multiple Is x a multiple of y? Grade school 51,17 52,17
RELPRIME Are x and y relatively prime? Euclid (300 34,39 34,51
BCE)
PRIMES Is x a prime? AKS 2002 53 51
EDIT- Is the edit distance between Dynamic neither algorithm

DISTANCE x and y less than 5? programming either quantum
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Definition of class NP

NP. Decision problems for which there is a poly-time certifier

|dea of certifier

* Certifier checks a proposed proof i that s € X
* Need not determine whether s € X on its own

N.B. |[t| = p(|s]) for
some polynomial p()

Def. Algorithm C(s,t) is a certifier for em X if for every string
s, s € X iff there exists a string t such that C(s, t) = yes

Equivalent def. NP = nondeterministic polynomial—time

not Kolynomial—time
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Certifiers and certificates: Composite

COMPOSITES. Given an integer s, is s composite?

= Certificate: A non-trivial factor t of s. CompositesCertifier(s,t)
. If(t<1lort=-s)
= Certifier. Return false
Else if (s is a multiple of t)
Return true

Blse

» [nstance. s = 437,669 Return false
 Certificate.t = 541 or 809.437,669 = 541x809

Conclusion. COMPOSITES € NP
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Certifiers and certificates: Hamiltonian cycle

HAM—CYCLE. Given an undirected graph G = (V,E), does there
exist a simple cycle that visits every node?

= Certificate: A permutation of n nodes HAM-CYCLE-Certifier(G, o)

If (Vi,j,0; # 0j &(0,0i41) €E E)
Return true

» Certifier.

Conclusion. HAM—Cycle € NP

Instance s

Certificate t
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P.NP,EXP

P. Decision problems for which there is a poly-time algorithm
EXP. Decision problems for which 3 an exponential-time algorithm

i.e., runs in time 0(2PUsD) for some polynomial p()

NP. Decision problems for which there is a poly-time certifier
= Claim. P € NP € EXP

P € NP. Consider any X € P, NP € EXP. Consider any X € NP,

* 3 poly—time A that solves X * 3 poly—time certifier C(s,t)

* Certificate: t = ¢, certifier * To decide input s,run C(s,t) on all
C(s,t) = A(s) strings t with [t| < p(|s]).

* Return yes,if C(s,t) ever says yes.
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Open question: P = NP?

>4 | he Millennium prize problems

CMI

* $1 million prize

= Consensus opinion on P = NP? Probably no.

Eight Signs A Claimed P=NP Proof Is Wrong

As of this writing, Vinay Deolalikar still hasn’t retracted his P+NP «

https://www.scottaaronson.com/blog/?p=458

Millennium Problems

Yang-Mills and Mass Gap
Experiment and computer simulations suggest the existence of a "mass gap" in the
no proof of this property is known.

Riemann Hypothesis

The prime number theorem determines the average distribution of the primes. Th:
average. Formulated in Riemann's 1859 paper, it asserts that all the 'non-obvious'

P vs NP Problem

If it is easy to check that a solution to a problem is correct, is it also easy to solve tr
the NP problems is that of the Hamiltonian Path Problem: given N cities to visit, hc
solution, | can easily check that it is correct. But | cannot so easily find a solution.

Navier-Stokes Equation

This is the equation which governs the flow of fluids such as water and air. Howeve
solutions exist, and are they unique? Why ask for a proof? Because a proof gives nc

Hodge Conjecture

The answer to this conjecture determines how much of the topology of the solutio
further algebraic equations. The Hodge conjecture is known in certain special case
dimension four it is unknown.

Poincaré Conjecture

In 1904 the French mathematician Henri Poincaré asked if the three dimensional ¢
manifold. This question, the Poincaré conjecture, was a special case of Thurston's §
three manifold is built from a set of standard pieces, each with one of eight well-ur

Birch and Swinnerton-Dyer Conjecture

Ciinnartad hv miich avid thic iartiira ralatac tha niimhar Af
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