
W’21 CS 584/684

Algorithm Design &
Analysis

Lecture 15

• Bipartite matching
• Linear programming

Portland State University

Fang Song

Exercise

§ For each of the following statements, decide TRUE or FALSE.
• Let 𝑓 be a flow and 𝐺! = (𝑉, 𝐸!) be the residual graph. Then 𝐸! ≤ 2 𝐸 .
• Any flow 𝑓 and cut (𝐴, 𝐵) satisfy that cap A, B ≤ 𝑣𝑎𝑙(𝑓).
• 𝑓 is a max flow iff. there is no augmenting path with respect to 𝑓.

1

Ford-Fulkerson algorithm: summary so far

2

𝑭𝒐𝒓𝒅−𝑭𝒖𝒍𝒌𝒆𝒓𝒔𝒐𝒏
While you can
• Greedily push flow
• Update residual graph

§Correctness. Augmenting path theorem.

§ Running time. Does it terminate at all?

Ford-Fulkerson algorithm: analysis

3

§Assumption. All capacities are integers between 1 and 𝐶.
§ Invariant. Every flow value 𝑓(𝑒) and every residual capacity 𝑐!(𝑒)

remains an integer throughout the algorithm.

§ Theorem. Ford-Fulkerson terminates in at most 𝑛𝐶 iterations.
Pf. • Each augmentation increases flow value by at least 1.

• There are at most 𝑛𝐶 units of capacity leaving source 𝑠.

§ Integrality theorem. If all capacities are integers, then there
exists a max flow 𝑓 for which every flow value 𝑓(𝑒) is an integer.

Running time 𝑂 𝑚𝑛𝐶 . Space 𝑂(𝑚 + 𝑛) Find an augmenting path in
𝑂(𝑚) time (by BFS/DFS).

§ Today. Applications when 𝐶 = 1 [N.B. running time 𝑂 𝑚𝑛]

Matching

4

Def. Given an undirected graph 𝐺 = (𝑉, 𝐸). A subset of edges 𝑀 ⊆
𝐸 is a matching if each node appears in at most one edge in 𝑀.

Max matching. Find a matching of max cardinality.
• i.e., adding any edge will make it no longer a matching

Bipartite Matching

5

Bipartite graph. A graph 𝐺 is bipartite if the nodes 𝑉 can be
partitioned into two subsets 𝐿 and 𝑅 such that every edge
connects a node in 𝐿 with a node in 𝑅.
(Max) Bipartite matching. Given a bipartite graph 𝐺 = (𝐿 ∪ 𝑅, 𝐸), find
a max cardinality matching.

1’

2’

3’

4’

5’

1

2

3

4

5

Matching
1−2", 3−1", 4−5′

1’

2’

3’

4’

5’

1

2

3

4

5

Max Matching
1−1", 2−2", 3−3", 5−5′

Reductions

§ Informal. Problem 𝐴 reduces to problem 𝐵
if there is a simple algorithm for 𝐴 that
uses an algorithm for 𝐵 as a subroutine.

6

§Common scenario [a.k.a. Karp reduction]
• Given instance 𝑥 of problem 𝐴.
• Convert 𝑥 to an instance 𝑥′ and solve it.
• Use the solution to 𝑥′ to build a solution for 𝑥.

𝐴 slover
𝐵 slover

𝐴 slover

𝐵 slover

𝑥
𝑥′
𝑦′

𝑦

§Useful skill
• Quickly identifying problems where existing solutions may be applied
• Good programmers do this all the time [don’t reinvent wheels]

Reducing bipartite matching to max flow

§ Reduction to max flow
• Create directed graph 𝐺" = 𝐿 ∪ 𝑅 ∪ 𝑠, 𝑡 , 𝐸"
• Direct all edges from 𝐿 to 𝑅, and assign capacity 1
• Add source 𝑠, and capacity 1 edges to every node in 𝐿
• Add sink 𝑡, and capacity 1 edges from each node in 𝑅 to 𝑡.

7

All edges have capacity 1
1’

2’

3’

4’

5’

1

2

3

4

5

𝑠 𝑡

𝐿 𝑅

𝐺′

1’

2’

3’

4’

5’

1

2

3

4

5

𝑠 𝑡

𝐿 𝑅

𝐺′

Bipartite matching: proof of correctness

Theorem. Max cardinality matching in 𝐺 = value of max flow in 𝐺*

8

All edges have capacity 1

Proof. We show two claims
• Max matching in 𝐺 ≤ max flow in 𝐺"
• Max matching in 𝐺 ≥ max flow in 𝐺"

Bipartite matching: proof of correctness

9

Proof. (Part 1) Max matching in 𝐺 ≤ max flow in 𝐺*
• Given max matching 𝑀 of cardinality 𝑘
• Consider flow 𝑓 that send 1 unit along each of 𝑘 paths
• 𝑓 is a flow of value 𝑘

1’

2’

3’

4’

5’

1

2

3

4

5𝐿 𝑅

𝐺 1’

2’

3’

4’

5’

1

2

3

4

5

𝑠 𝑡

𝐿 𝑅

𝐺′
1

Bipartite matching: proof of correctness

10

Proof. (Part 2) Max matching in 𝐺 ≥ max flow in 𝐺*
• Given max flow 𝑓 in 𝐺′ of integer value 𝑘 [Exists by Integrality theorem]
• All capacities are 1 ⇒ 𝑓 e is 0 or 1. Let 𝑀 = edges from 𝐿 to 𝑅 with 𝑓 𝑒 = 1
⇒ 𝑀 is a matching (each node in 𝐿 and 𝑅 participate in at most one edge)
& 𝑀 has size 𝑘 (consider cut (𝑠 ∪ 𝐿, 𝑅 ∪ 𝑡)).

1’

2’

3’

4’

5’

1

2

3

4

5𝐿 𝑅

1’

2’

3’

4’

5’

1

2

3

4

5

𝑠 𝑡

𝐿 𝑅

𝐺′ 1

Perfect matching

Def. A matching 𝑀 ⊆ 𝐸 is perfect if each node appears in exactly
one edge in 𝑀.

11

When does a bipartite graph have a perfect matching?

Structure of bipartite graphs with perfect matchings.
• Clearly we must have |𝐿| = |𝑅|
• What other conditions are necessary?
• What conditions are sufficient?

Perfect matching

Notation. Let 𝑆 be a subset of nodes. Let 𝑁(𝑆) be the set of nodes
adjacent to nodes in 𝑆.

12

Observation. If a bipartite graph 𝐺 = (𝐿 ∪ 𝑅, 𝐸), has a perfect
matching, then 𝑁 𝑆 ≥ |𝑆| for all subsets 𝑆 ⊆ 𝐿.
§ Pf. Each node in 𝑆 has to be matched to a different node in 𝑁 𝑆 .

1’

2’

3’

4’

5’

1

2

3

4

5

No perfect matching
𝑆 = 2,4,5 , 𝑁 𝑆 = {2", 5′}2’

5’

2

4

5

Marriage theorem

Actually, this is also a sufficient condition …

13

Marriage Theorem [Frobenius1917, Hall1935]
Let 𝐺 = (𝐿 ∪ 𝑅, 𝐸) be a bipartite graph with 𝐿 = |𝑅|. Then 𝐺 has a
perfect matching if and only if 𝑁 𝑆 ≥ |𝑆| for all subsets 𝑆 ⊆ 𝐿.

Pf. ⇒ (“only if”) This is the previous observation.

Marriage theorem: proof

14

Pf. ⇐ (“if”) Suppose for contradiction 𝑁 𝑆 ≥ |𝑆| for all subsets
𝑆 ⊆ 𝐿, but 𝐺 does not contain a perfect matching.
• Formulate as a max flow problem in 𝐺" with ∞ capacities on edges from 𝐿 to 𝑅.
• Let (A, B) be min cut in 𝐺′. By max-flow min-cut, 𝑐𝑎𝑝 𝐴, 𝐵 < 𝐿
• Let 𝐿# = 𝐿 ∩ 𝐴, 𝐿$ = 𝐿 ∩ 𝐵, 𝑅# = 𝑅 ∩ 𝐴. Then 𝑐𝑎𝑝 𝐴, 𝐵 = |𝐿$| + |𝑅#|.
⇒ 𝑅# = 𝑐𝑎𝑝 𝐴, 𝐵 − 𝐿$ < 𝐿 − 𝐿$ = |𝐿#|
• Since min cut cannot use ∞ edges, 𝑁(𝐿#) ⊆ 𝑅#. 𝑁(𝐿# | ≤ 𝑅# < |𝐿#| !!!

𝐿 = 1…5 , 𝑅 = {1"…5′}
𝐿# = 2,4,5 , 𝐿$ = 1,3 , 𝑅#= 2", 5"

𝑁 𝐿# = {2", 5′}

Additional remarks on Max
flow algorithms

15

Ford-Fulkerson augmenting-path algorithm

16

𝑭𝒐𝒓𝒅−𝑭𝒖𝒍𝒌𝒆𝒓𝒔𝒐𝒏(𝐺, 𝑠, 𝑡, 𝑐)
For each 𝑒 ∈ 𝐸 𝑓 𝑒 ← 0, 𝐺! ← 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑔𝑟𝑎𝑝ℎ
While there is an augmenting path 𝑃 in 𝐺!
𝑓 ← 𝐴𝑢𝑔𝑚𝑒𝑛𝑡(𝑓, 𝑐, 𝑃)
Update 𝐺!

return 𝑓

Theorem. Ford-Fulkerson terminates in at most 𝑛𝐶 iterations.
Running time. 𝑂 𝑚𝑛𝐶

Exponential in input size:
log 𝐶 bits (to represent 𝐶)

Can it be this bad?

s

𝑣 𝑤

t

𝐶 𝐶

1

𝐶 𝐶

Ford-Fulkerson: exponential example

17

Obs. If max capacity is 𝐶, then FF can take ≥ 𝐶 iterations.

s

𝑣 𝑤

t

𝐶 𝐶

1

𝐶 𝐶

• 𝑠 → 𝑣 → 𝑤 → 𝑡
• 𝑠 → 𝑤 → 𝑣 → 𝑡
• 𝑠 → 𝑣 → 𝑤 → 𝑡
• 𝑠 → 𝑤 → 𝑣 → 𝑡
• …
• 𝑠 → 𝑣 → 𝑤 → 𝑡
• 𝑠 → 𝑤 → 𝑣 → 𝑡

Each augmenting path
sends only 1 unit of flow
(# augmenting paths = 2𝐶)

Choosing good augmenting paths

§Use care when selecting augmenting paths
• Some choices lead to exponential algorithms
• Clever choices lead to polynomial algorithms
• If capacities are irrational, algorithm not guaranteed to terminate!

18

§Good choices of augmenting paths [EdmondsKarp’72,Dinitz’70]
• Max bottleneck capacity [Next]
• Fewest edges (shortest) [CLRS 26.2]

Capacity scaling

Intuition. Choosing path with highest bottleneck capacity
increases the flow by max possible amount
• OK to choose sufficiently large bottleneck: scaling parameter Δ
• Let 𝐺! Δ be the subgraph of the residual graph consisting of only arcs with

capacity at least Δ

19

s

𝑣 𝑤

t

110 122

1
102 170

𝐺!

s

𝑣 𝑤

t

110 122

102 170
𝐺!(100)

Capacity scaling algorithm

20

𝐒𝐜𝐚𝐥𝐢𝐧𝐠−Max−Flow (𝐺, 𝑠, 𝑡, 𝑐)
For each 𝑒 ∈ 𝐸 𝑓 𝑒 ← 0,
𝐺! ← 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑔𝑟𝑎𝑝ℎ
Δ ← smallest power of 2 & ≥ 𝐶

While Δ ≥ 1
𝐺!(Δ) ← Δ−residual graph
While there is an augmenting path 𝑃 in 𝐺!(Δ)

𝑓 ← 𝐴𝑢𝑔𝑚𝑒𝑛𝑡(𝑓, 𝑐, 𝑃) // augment flow by ≥ Δ
Update 𝐺!(Δ)

Δ ← Δ/2
return 𝑓 Exercise. Prove correctness

Capacity scaling algorithm: running time

21

While Δ ≥ 1
𝐺!(Δ) ← Δ−residual graph
While there is 𝑃 in 𝐺!(Δ)

𝑓 ← 𝐴𝑢𝑔𝑚𝑒𝑛𝑡(𝑓, 𝑐, 𝑃)
Update 𝐺!(Δ)

Δ ← Δ/2
…

Lemma1 Outer loop runs 1 + log 𝐶 times.
Pf. Initially 𝐶 ≤ Δ ≤ 2𝐶, decreases by a factor of 2 each
iteration

Lemma2. Let 𝑓 be the flow at the end of
a Δ-scaling phase. Then the value of the
maximum flow 𝑓∗ is at most 𝑣(𝑓) + 𝑚Δ.

Lemma3. There are at most 2𝑚 augmentations per scaling phase.
Pf. Let 𝑓 be the flow at end of previous scaling
• [Lemma2]⇒ 𝑣 𝑓∗ ≤ 𝑣 𝑓 +𝑚(2Δ)
• Each augmentation in Δ-scaling increases 𝑓 by Δ

Theorem. Scaling-max-flow finds a max flow in 𝑂(𝑚, log 𝐶) time.

𝐴

Completing the proof

22

Lemma2. Let 𝑓 be the flow at the end of a Δ-scaling phase. Then
the value of the maximum flow 𝑓∗ is at most 𝑣(𝑓) + 𝑚Δ.

• Choose 𝐴 to be the set of nodes reachable from 𝑠 in 𝐺!(Δ)
• By definition 𝑠 ∈ 𝐴 & 𝑡 ∉ 𝐴

Pf. [Almost identical to proof of max-flow min-cut theorem]
Show cut (𝐴, 𝐵) w. 𝑐𝑎𝑝 𝐴, 𝐵 ≤ 𝑣 𝑓 +𝑚Δ at the end of a Δ−phase.

𝑣 𝑓 = ∑+ outof #𝑓 𝑒 −∑+ ,-./ #𝑓 𝑒
≥ ∑+ outof #(𝑐 𝑒 − Δ) − ∑+ ,-./ #Δ
= ∑+ outof # 𝑐 𝑒 − ∑+ /0./1 #Δ − ∑+ ,-./ #Δ
≥ 𝑐𝑎𝑝 𝐴, 𝐵 −𝑚𝛥 s

t
Original 𝐺

Augmenting-path algorithms: summary

23

Year Method # augmentations Running time
1955 Augmenting path 𝑛𝐶 𝑂(𝑚𝑛𝐶)
1972 Fattest path 𝑚 log𝑚𝐶 𝑂(𝑚2 log 𝑛 log𝑚𝐶)
1972 Capacity scaling 𝑚 log 𝐶 𝑂(𝑚2 log 𝐶)
1985 Improved CapS 𝑚 log 𝐶 𝑂(𝑚𝑛 log 𝐶)
1970 Shortest path 𝑚𝑛 𝑂(𝑚2𝑛)
1970 level graph 𝑚𝑛 𝑂(𝑚𝑛2)
1983 dynamic trees 𝑚𝑛 𝑂(𝑚𝑛 log 𝑛)

and the show goes on …

24

Year Method Worst case Discovered by
1951 Simplex 𝑂(𝑚𝑛2𝐶) Dantzig
1955 Augmenting path 𝑂(𝑚𝑛𝐶) Ford-Fulkerson

…
1988 Push-relabel 𝑂(𝑚𝑛 log(𝑛2/𝑚)) Goldberg-Tarjan

…
2013 Compact networks 𝑂(𝑚𝑛) Orlin
2016 Electrical flows �𝑂(𝑚34/6𝐶3/6) Madry
20XX

Maximum flows can be computed in 𝑂(𝑚𝑛) time
To keep it simple, cite below when you invoke a max-flow subroutine in hw/exam

Another formulation of max-flow problem

Recall. An 𝑠−𝑡 flow is a function 𝑓: 𝐸 → ℝ satisfying
• [Capacity] ∀𝑒 ∈ 𝐸: 0 ≤ 𝑓 𝑒 ≤ 𝑐 𝑒
• [Conservation] ∀𝑣 ∈ 𝑉\{𝑠, 𝑡}: ∑+ into 7 𝑓 𝑒 = ∑+ out of 7 𝑓 𝑒

The value of a flow 𝑓 is 𝑣 𝑓 ≔ ∑. out of / 𝑓(𝑒)

25

Max−Flow 𝐏𝐫𝐨𝐛𝐥𝐞𝐦
Real-value variables 𝑓 = {𝑓+: 𝑒 ∈ 𝐸}
Maximize: 𝑣(𝑓)
Subject to:

0 ≤ 𝑓+ ≤ 𝑐 𝑒 , ∀𝑒 ∈ 𝐸
∑+ into 7 𝑓+ − ∑+ out of 7 𝑓+ = 0, ∀𝑣 ∈ 𝑉\{𝑠, 𝑡}

Linear constraints: no 𝑥2, 𝑥𝑦, sin 𝑥 , …

Grade maximization

Input. HW from two courses (xxx & 584/684) due in one day
• Every hour you spend, you earn 1pts on xxx or 5pts on 584/684
• Your brain will explode if you work more than 12hrs on xxx or 15hrs on 5/684
• Of course, there are only 24 hrs in a day

Goal. Maximize the total pts you can earn

26

Grade−Maximization
Variables: 𝑥3 (xxx hrs); 𝑥2 (5/684 hrs)
Maximize: 𝑥3 + 5𝑥2
Subject to: // linear constraints

0 ≤ 𝑥3 ≤ 12
0 ≤ 𝑥2 ≤ 15
𝑥3 + 𝑥2 ≤ 24

𝑥2

𝑥3

5

10

15

5 10 15

20

20

𝑥! + 𝑥" = 24

Feasible
region

Obj.: 𝑥! + 5𝑥" = 𝑐

𝑐 = 25
𝑐 = 50

𝑐 = 75

OPT: 𝑐 = 84, 𝑥! = 9, 𝑥" = 15

Linear programming

Linear programming. Optimize a linear objective function subject
to linear inequalities.
• Formal definition and representations
• Duality
• Algorithms: simplex, ellipsoid, interior point

27

Why significant?
• Design poly-time algorithms & approximation algorithms
• Wide applications: math, economics, business, transportation, energy,

telecommunications, and manufacturing

Ranked among most important scientific advances of 20th century

Linear programming

28

§ “Standard form” of an LP
• 𝑚 = # constraints, 𝑛 = # decision variables. 𝑖 = 1,… ,𝑚, 𝑗 = 1,… , 𝑛
• Input: real numbers 𝑐:, 𝑎;:, 𝑏;
• Output: real numbers 𝑥:
• Maximize linear objective function subject to linear inequalities
• Feasible vs. optimal soln’s.

Max ∑:<3= 𝑐:𝑥:
Subject to: // linear constraints

�
:<3

=

𝑎;:𝑥: ≤ 𝑏; 1 ≤ 𝑖 ≤ 𝑚

𝑥: ≥ 0 1 ≤ 𝑗 ≤ 𝑛 𝒄 =

𝑐!
𝑐"
…
𝑐#

𝒙 =

𝑥!
𝑥"
…
𝑥#

𝒃 =

𝑏!
𝑏"
…
𝑏$

𝐴 =
𝑎!! … 𝑎!#
𝑎"! … 𝑎"#…
𝑎!"

…
…

…
𝑎!#

𝟎 =

0
0
…
0

Max 𝒄@𝒙
Subject to: 𝐴𝒙 ≤ 𝒃

𝒙 ≥ 𝟎
≡

Linear programming: variants

29

§ “Slack form” of an LP: linear equalities
Max ∑:<3= 𝑐:𝑥:
Subject to: // linear constraints

$
:<3

=

𝑎;:𝑥: ≤ 𝑏; 1 ≤ 𝑖 ≤ 𝑚

𝑥: ≥ 0 1 ≤ 𝑗 ≤ 𝑛

Max ∑:<3= 𝑐:𝑥:
Subject to: // linear constraints

𝑠; = 𝑏; −$
:<3

=

𝑎;:𝑥: 1 ≤ 𝑖 ≤ 𝑚

(slack vars) 𝑠; ≥ 0 1 ≤ 𝑖 ≤ 𝑚
𝑥: ≥ 0 1 ≤ 𝑗 ≤ 𝑚

⇒

§Other equivalent variations
• Minimization vs. maximization
• Variables without nonnegativity constraints
• ≥ vs. ≤

