@ Portland State University

__

W21 CS 584/684 Lecture 15

 Bipartite matching
* Linear programming

Algorithm Design &
5 Analysis ’

__

--

__

Exercise

* For each of the following statements, decide TRUE or FALSE.

* Let f be a flow and G = (V, Ef) be the residual graph. Then |Ef| < 2|E|.
* Any flow f and cut (4, B) satisfy that cap(A, B) < val(f).
* f is a max flow iff. there is no augmenting path with respect to f.

Ford-Fulkerson algorithm: summary so far

Ford—Fulkerson

While you can
* Greedily push flow
 Update residual graph

= Correctness. Augmenting path theorem.

= Running time. Does it terminate at all?

Ford-Fulkerson algorithm: analysis

= Assumption. All capacities are integers between 1 and C.
= Invariant. Every flow value f(e) and every residual capacity c/(e)
remains an integer throughout the algorithm.
= Theorem. Ford-Fulkerson terminates in at most nC iterations.

Pf. < Each augmentation increases flow value by at least 1.
* There are at most nC units of capacity leaving source s.

Find an augmenting path in

—— Running time 0(mnC(). Space O(m + n) 0(m) time (by BFS/DFS).

= Integrality theorem. If all capacities are integers, then there
exists a max flow f for which every flow value f(e) is an integer.

= Today. Applications when ¢ = 1 [N.B. running time 0 (mn)]

Matching

Def. Given an undirected graph G = (V, E). A subset of edges M
E is a matching if each node appears in at most one edge in M.

Max matching. Find a matching of max cardinality.
* i.e.,adding any edge will make it no longer a matching

Bipartite Matching

Bipartite graph. A graph G is bipartite if the nodes V can be
partitioned into two subsets L and R such that every edge
connects a node in L with a node in R.

(Max) Bipartite matching. Given a bipartite graph ¢ = (L U R, E), find
a max cardinality matching.

Matching
1-2',3—-1',4-5'

Max Matching
1-1',2-2',3-3',5-5’

Reductions

= Informal. Problem A reduces to problem B Al B EVEr
if there is a simple algorithm for A that B slover
uses an algorithm for B as a subroutine.

= Common scenario [a.k.a. Karp reduction]) A slover
* Given instance x of problem A. SN ’
 Convert x to an instance x' and solve it. \’i’» B slover
* Use the solution to x’ to build a solution for x. iy pna
Y

» Useful skill

* Quickly identifying problems where existing solutions may be applied
* Good programmers do this all the time [don’t reinvent wheels]

Reducing bipartite matching to max flow

= Reduction to max flow
* Create directed graph G' = (LUR U {s,t},E")
* Direct all edges from L to R, and assign capacity 1
* Add source s, and capacity 1 edges to every node in L
* Add sink t, and capacity 1 edges from each node in R to t.

All edges have capacity 1

Bipartite matching: proof of correctness

Theorem. Max cardinality matching in G = value of max flow in G’

Proof. We show two claims
e Max matching in G < max flow in G’
e Max matching in G = max flow in G’

All edges have capacity 1

Bipartite matching: proof of correctness

Proof. (Part 1) Max matching in G < max flow in G’
* Given max matching M of cardinality k
* Consider flow f that send 1 unit along each of k paths
* fis a flow of value k

Bipartite matching: proof of correctness

Proof. (Part 2) Max matching in G = max flow in G’
 Given max flow f in G’ of integer value k [Exists by Integrality theorem]
* All capacitiesare 1 = f(e) is 0 or 1. Let M = edges from L to R with f(e) =1
= M is a matching (each node in L and R participate in at most one edge)
& M has size k (consider cut (s U L,R U t)).

Perfect matching

Def. A matching M C E is perfect if each node appears in exactly
one edge in M.

When does a bipartite graph have a perfect matching?

Structure of bipartite graphs with perfect matchings.
* Clearly we must have |L| = |R|
* What other conditions are necessary!?
* What conditions are sufficient?

11

Perfect matching

Notation. Let S be a subset of nodes. Let N(S) be the set of nodes
adjacent to nodes in S.

Observation. If a bipartite graph G = (L U R, E), has a perfect
matching, then |N(S)| = |S| for all subsets S € L.

= Pf. Each node in S has to be matched to a different node in N(S).

No perfect matching
S ={2,45},N(S) ={2',5}

12

Marriage theorem

Actually, this is also a sufficient condition ...

Marriage Theorem [Frobenius1917, Hall1935]

Let G = (L UR,E) be a bipartite graph with [L| = |R|. Then G has a
perfect matching if and only if [N(S)| = |S| for all subsets S C L.

Pf. = (“only it”) This is the previous observation.

13

Marriage theorem: proof

Pf. & ("it") Suppose for contradiction |[N(S)| = |S| for all subsets
S € L, but G does not contain a perfect matching.
* Formulate as a max flow problem in G’ with oo capacities on edges from L to R.
* Let (A, B) be min cut in G'. By max-flow min-cut, cap(4, B) < |L|
eletl,=LNALg=LNB,Ry=RNAThen cap(4,B) = |Lg| + |R4l.
= |Ryl = cap(4,B) — |Lg| < |L| = |Lp| = |L4|
* Since min cut cannot use oo edges, N(Ly) € R4. [IN(Ly)| < |Ry| < |Lg| ™M

GI

L={1..5,R=1{1..5)
@ L, ={2,45}Lg ={1,3},R,={2',5'}
N(La) = {2',5'}

14

Additional remarks on Max
flow algorithms

Ford-Fulkerson augmenting-path algorithm

Ford—Fulkerson(G,s,t,c)
Foreache € E f(e) « 0, Gy « residual graph
While there is an augmenting path P in G
f < Augment(f,c, P)
Update Gr
return f

Theorem. Ford-Fulkerson terminates in at most nC iterations.

Running time. O0(mnc(C) -

Exponential in input size:
log C bits (to represent ()

Can it be this bad?

16

Ford-Fulkerson: exponential example
Obs. If max capacity is C, then FF can take > C iterations.

*SoUV-oOWwW-TL
*S>oOW-o>UV-t C
*SoUV-oOWwW-L
*S>oOW-o>UV-t

*SoUV-oOWwW-TL
*S>oOW-o>UV-t

Each augmenting path
sends only 1 unit of flow
(# augmenting paths = 2()

17

Choosing good augmenting paths

= Use care when selecting augmenting paths
* Some choices lead to exponential algorithms
* Clever choices lead to polynomial algorithms
* If capacities are irrational, algorithm not guaranteed to terminate!

* Good choices of augmenting paths [EdmondsKarp’72,Dinitz'70]

* Max bottleneck capacity [Next]
* Fewest edges (shortest) [CLRS 26.2]

18

Capacity scaling

Intuition. Choosing path with highest bottleneck capacity
increases the flow by max possible amount
* OK to choose sufficiently large bottleneck: scaling parameter A

* Let G;(A) be the subgraph of the residual graph consisting of only arcs with
capacity at least A

A A

110 122 110 122

&1 —» & b

102 170 102 170

19

Capacity scaling algorithm

Scaling—Max—Flow (G, s, t, ¢)
Foreache € E f(e) « 0,
Gf « residual graph
A < smallest power of 2 & > C

While A =1
Gf(A) « A—residual graph
While there is an augmenting path P in G¢(A)
[< Augment(f,c, P) // augment flow by = A
Update Gf(4)
Ae—AJ2
return f Exercise. Prove correctness

20

Capacity scaling algorithm: running time

While A > 1 Lemmal Outer loop runs times.

Gr(A) < A—residual graph pf, Initially C < A < 2C, decreases by a factor of 2 each
While there is Pin Gf(4) iteration

f < Augment(f,c, P)
Update Gr(A)
Ae—AJ2

Lemma2. Let f be the flow at the end of
a A-scaling phase. Then the value of the
maximum flow f* is at most v(f) + mA.

Lemma3. There are at most 2Zm augmentations per scaling phase.

Pf. Let f be the flow at end of previous scaling
e [Lemma2] = v(f*) < v(f) + m(24)
* Each augmentation in A-scaling increases f by A

Theorem. Scaling-max-flow finds a max flow in 0(m? log C) time.

21

Completing the proof

LemmaZ2. Let f be the flow at the end of a A-scaling phase. Then
the value of the maximum flow f* is at most v(f) + mA.

Pf. [Almost identical to proof of max-flow min-cut theorem]
Show cut (4, B) w. cap(4, B) < v(f) + mA at the end of a A—phase.

* Choose A to be the set of nodes reachable from s in G¢(A)
* By definitions € A &t € A

v(f) = Ze OutOfAf(e) — 2eintoa f(€)
= Ze OutOfA(C(e) —A) — Xeintoal
— Ze outof 4 c(e) = Xeoutofad = Leintoad
> cap(A,B) —mA

Original G
A

22

Augmenting-path algorithms: summary

Neor | Ntod L4 sugmertair:

1955 Augmenting path O (mnC)
1972 Fattest path mlong 0(m?lognlogmcC)
1972 Capacity scaling mlogC 0(m?log C)
1985 Improved Cap$S mlog C O(mnlogC)
1970 Shortest path mn 0(m?n)
1970 level graph mn 0 (mn?)

1983 dynamic trees mn O(mnlogn)

and the show goes on ...

Near | Method | Worstcase | _ Discovered by

1951 Simplex 0(mn?C Dantzig
1955 Augmenting path O(mnC) Ford-Fulkerson

1988 Push-relabel 0 (mnlog(n?/m)) Goldberg-Tarjan

2013 Compact networks Orlin

2016 Electrical flows 0 (m10/7¢c1/7y Madry
20XX

To keep it simple, cite below when you invoke a max-flow subroutine in hw/exam

Maximum flows can be computed in O(mn) time

24

Another formulation of max-flow problem

Recall. An s—t flow is a function f: E — R satisfying
o [Capacity] Ve € E: 0 < f(e) < c(e)
* [Conservation] Vv € V\{s,t}: X, intof(€) =2, out of »f (&)

The value of a flow fis v(f) =X _ .+ or. f(€)

Max—Flow Problem
Real-value variables f = {f.:e € E}
Maximize: v(f)
Subject to:

0<f,<c(e), VeeE

Zeintvae - Zeout Ofvfe =0, Vv € V\{}t\}\

Linear constraints: no x%, xy, sin(x), ...

25

Grade maximization

Input. HW from two courses (xxx & 584/684) due in one day
* Every hour you spend, you earn 1pts on xxx or 5pts on 584/684
* Your brain will explode if you work more than 12hrs on xxx or 15hrs on 5/684

* Of course, there are only 24 hrs in a day

Goal. Maximize the total pts you can earn
Obj.: x; + 5x, =

Grade—Maximization K
Variables: x; (xxx hrs); x, (5/684 hrs) - i +x, = 24
Maximize: x; +5x, L OPT c=84,x =9x, =15
: YRY : 15 ~-------:::: ------

Subject to: // linear constraints T e = 75

0 i X1 i 1§ 10 Feasible... C — 50

O=x;=1 5 -region__| _9c

X1+ Xy < 24 =R

5 10 15 20 X1

26

Linear programming

Linear programming. Optimize a linear objective function subject
to linear inequalities.

* Formal definition and representations

* Duality

* Algorithms: simplex, ellipsoid, interior point

Why significant?
* Design poly-time algorithms & approximation algorithms

* Wide applications: math, economics, business, transportation, energy,
telecommunications, and manufacturing

Ranked among most important scientific advances of 20th century

27

Linear programming

» “Standard form” of an LP
* m = # constraints,n = # decision variables.i = 1,....m,j =1, ...,n
* Input: real numbers c¢;, a;;, b;
* Output: real numbers X;

* Maximize linear objective function subject to linear inequalities
* Feasible vs. optimal soln’s.

Max Z?:l CjXj Max c'x a1
Subject to: // linear constraints = Subjectto: Ax <b A=|"2
n X 2 O Am1
v < D <ji<
Z ajjxi <b; 1<i<m . N .
j=1 c, bz | x
xi=20 1<j<n c= | b= X =

Cn b, Xn

Linear programming: variants

= “Slack form” of an LP: linear equalities

Max 2?21 CiXj Max 2?21 CiXj
Subject to: // linear constraints — Subject to: // linear constraints
n n
zai]‘Xiji 1<i<m Si=bi—2aijxj 1<i<m
j=1 j=1
xi=20 1<j<n (slackvars)s; =0 1<i<m

xi=20 1<j<m

= Other equivalent variations
* Minimization vs. maximization

* Variables without nonnegativity constraints
* =2 Vs. <

29

