

W'21 CS 584/684

Algorithm Design & Analysis

Fang Song

Lecture 15

Bipartite matchingLinear programming

Exercise

• For each of the following statements, decide TRUE or FALSE.

- Let f be a flow and $G_f = (V, E_f)$ be the residual graph. Then $|E_f| \le 2|E|$.
- Any flow f and cut (A, B) satisfy that $cap(A, B) \leq val(f)$.
- f is a max flow iff. there is no augmenting path with respect to f.

Ford-Fulkerson algorithm: summary so far

Ford-Fulkerson

While you can

- Greedily push flow
- Update residual graph

Correctness. Augmenting path theorem.

Running time. Does it terminate at all?

Assumption. All capacities are integers between 1 and C. Invariant. Every flow value f(e) and every residual capacity c_f(e) remains an integer throughout the algorithm.

Ford-Fulkerson algorithm: analysis

• Theorem. Ford-Fulkerson terminates in at most nC iterations.

- **Pf.** Each augmentation increases flow value by at least 1.
 - There are at most nC units of capacity leaving source s.

→ Running time O(mnC). Space O(m + n)

Find an augmenting path in O(m) time (by BFS/DFS).

Integrality theorem. If all capacities are integers, then there exists a max flow f for which every flow value f(e) is an integer.

• Today. Applications when C = 1 [N.B. running time O(mn)]

Matching

Def. Given an undirected graph G = (V, E). A subset of edges $M \subseteq E$ is a matching if each node appears in at most one edge in M.

Max matching. Find a matching of max cardinality.

• i.e., adding any edge will make it no longer a matching

Bipartite Matching

Bipartite graph. A graph G is bipartite if the nodes V can be partitioned into two subsets L and R such that every edge connects a node in L with a node in R.

(Max) Bipartite matching. Given a bipartite graph $G = (L \cup R, E)$, find a max cardinality matching.

Informal. Problem A reduces to problem B if there is a simple algorithm for A that uses an algorithm for B as a subroutine.

Common scenario [a.k.a. Karp reduction]

- Given instance x of problem A.
- Convert x to an instance x' and solve it.
- Use the solution to x' to build a solution for x.

Useful skill

• Quickly identifying problems where existing solutions may be applied

Reductions

• Good programmers do this all the time [don't reinvent wheels]

A slover χ *B* slover

Reduction to max flow

- Create directed graph $G' = (L \cup R \cup \{s, t\}, E')$
- Direct all edges from L to R, and assign capacity 1
- Add source s, and capacity 1 edges to every node in L
- Add sink t, and capacity 1 edges from each node in R to t.

Reducing bipartite matching to max flow

Bipartite matching: proof of correctness

Theorem. Max cardinality matching in G = value of max flow in G'

Proof. We show two claims

- Max matching in $G \leq \max$ flow in G'
- Max matching in $G \ge \max$ flow in G'

Proof. (Part 1) Max matching in $G \leq \max$ flow in G'

- Given max matching M of cardinality k
- Consider flow f that send 1 unit along each of k paths
- f is a flow of value k

Bipartite matching: proof of correctness

Proof. (Part 2) Max matching in $G \ge \max$ flow in G'

- Given max flow f in G' of integer value k [Exists by Integrality theorem]
- All capacities are $1 \Rightarrow f(e)$ is 0 or 1. Let M = edges from L to R with f(e) = 1

Bipartite matching: proof of correctness

 \Rightarrow *M* is a matching (each node in *L* and *R* participate in at most one edge) & *M* has size *k* (consider cut (*s* \cup *L*, *R* \cup *t*)).

Def. A matching $M \subseteq E$ is perfect if each node appears in exactly one edge in M.

Perfect matching

When does a bipartite graph have a perfect matching?

Structure of bipartite graphs with perfect matchings.

- Clearly we must have |L| = |R|
- What other conditions are necessary?
- What conditions are sufficient?

Perfect matching

Notation. Let S be a subset of nodes. Let N(S) be the set of nodes adjacent to nodes in S.

- Observation. If a bipartite graph $G = (L \cup R, E)$, has a perfect matching, then $|N(S)| \ge |S|$ for all subsets $S \subseteq L$.
- Pf. Each node in S has to be matched to a different node in N(S).

No perfect matching $S = \{2,4,5\}, N(S) = \{2',5'\}$

Actually, this is also a sufficient condition ...

Marriage Theorem [Frobenius1917, Hall1935]

Let $G = (L \cup R, E)$ be a bipartite graph with |L| = |R|. Then G has a perfect matching if and only if $|N(S)| \ge |S|$ for all subsets $S \subseteq L$.

Marriage theorem

Pf. \Rightarrow ("only if") This is the previous observation.

Marriage theorem: proof

Pf. \leftarrow ("if") Suppose for contradiction $|N(S)| \ge |S|$ for all subsets $S \subseteq L$, but G does not contain a perfect matching.

- Formulate as a max flow problem in G' with ∞ capacities on edges from L to R.
- Let (A, B) be min cut in G'. By max-flow min-cut, cap(A, B) < |L|
- Let $L_A = L \cap A, L_B = L \cap B, R_A = R \cap A$. Then $cap(A, B) = |L_B| + |R_A|$. $\Rightarrow |R_A| = cap(A, B) - |L_B| < |L| - |L_B| = |L_A|$
- Since min cut cannot use ∞ edges, $N(L_A) \subseteq R_A$. $|N(L_A)| \leq |R_A| < |L_A| !!!$

$$L = \{1 \dots 5\}, R = \{1' \dots 5'\}$$
$$L_A = \{2,4,5\}, L_B = \{1,3\}, R_A = \{2',5'\}$$
$$N(L_A) = \{2',5'\}$$

Additional remarks on Max flow algorithms

For each $e \in E$ $f(e) \leftarrow 0$, $G_f \leftarrow residual graph$ While there is an augmenting path P in G_f $f \leftarrow Augment(f, c, P)$ Update G_f return f

Theorem. Ford-Fulkerson terminates in at most nC iterations. Running time. O(mnC)

Ford-Fulkerson augmenting-path algorithm

Exponential in input size: log C bits (to represent C)

Can it be this bad?

Obs. If max capacity is C, then FF can take $\geq C$ iterations.

Ford-Fulkerson: exponential example

- $s \to v \to w \to t$
- $s \to w \to v \to t$
- $s \rightarrow v \rightarrow w \rightarrow t$
- $s \to w \to v \to t$
- •
- $s \rightarrow v \rightarrow w \rightarrow t$
- $s \to w \to v \to t$

Each augmenting path sends only 1 unit of flow (# augmenting paths = 2*C*)

• Use care when selecting augmenting paths

- Some choices lead to exponential algorithms
- Clever choices lead to polynomial algorithms
- If capacities are irrational, algorithm not guaranteed to terminate!

Good choices of augmenting paths [EdmondsKarp'72,Dinitz'70]

Choosing good augmenting paths

- Max bottleneck capacity [Next]
- Fewest edges (shortest) [CLRS 26.2]

Capacity scaling

Intuition. Choosing path with highest bottleneck capacity increases the flow by max possible amount

- OK to choose sufficiently large bottleneck: scaling parameter Δ
- Let $G_f(\Delta)$ be the subgraph of the residual graph consisting of only arcs with capacity at least Δ

Capacity scaling algorithm Scaling–Max–Flow (G, s, t, c)For each $e \in E f(e) \leftarrow 0$, $G_f \leftarrow residual \ graph$ $\Delta \leftarrow \text{smallest power of } 2 \& \geq C$ While $\Delta \geq 1$ $G_f(\Delta) \leftarrow \Delta$ -residual graph While there is an augmenting path P in $G_f(\Delta)$ $f \leftarrow Augment(f, c, P) // augment flow by \geq \Delta$ Update $G_f(\Delta)$ $\Delta \leftarrow \Delta/2$ **Exercise**. Prove correctness return f

Capacity scaling algorithm: running time Lemmal Outer loop runs $1 + \log C$ times. While $\Delta \geq 1$ $G_f(\Delta) \leftarrow \Delta$ -residual graph **Pf.** Initially $C \le \Delta \le 2C$, decreases by a factor of 2 each While there is *P* in $G_f(\Delta)$ iteration $f \leftarrow Augment(f, c, P)$ Lemma2. Let f be the flow at the end of Update $G_f(\Delta)$ a Δ -scaling phase. Then the value of the $\Delta \leftarrow \Delta/2$ maximum flow f^* is at most $v(f) + m\Delta$

Lemma 3. There are at most 2m augmentations per scaling phase.

Pf. Let f be the flow at end of previous scaling

- [Lemma2] $\Rightarrow v(f^*) \le v(f) + m(2\Delta)$
- Each augmentation in $\Delta\text{-scaling}$ increases f by Δ

Theorem. Scaling-max-flow finds a max flow in $O(m^2 \log C)$ time.

Completing the proof

Lemma2. Let f be the flow at the end of a Δ -scaling phase. Then the value of the maximum flow f^* is at most $v(f) + m\Delta$.

Pf. [Almost identical to proof of max-flow min-cut theorem] Show cut (A, B) w. $cap(A, B) \leq v(f) + m\Delta$ at the end of a Δ -phase.

- Choose A to be the set of nodes reachable from s in $G_f(\Delta)$
- By definition $s \in A \& t \notin A$

$$v(f) = \sum_{e \text{ outof } A} f(e) - \sum_{e \text{ into } A} f(e)$$

$$\geq \sum_{e \text{ outof } A} (c(e) - \Delta) - \sum_{e \text{ into } A} \Delta$$

$$= \sum_{e \text{ outof } A} c(e) - \sum_{e \text{ outof } A} \Delta - \sum_{e \text{ into } A} \Delta$$

$$\geq cap(A, B) - m\Delta$$

Original G

A

Augmenting-path algorithms: summary

Year	Method	# augmentations	Running time
1955	Augmenting path	пС	0(mnC)
1972	Fattest path	$m\log mC$	$O(m^2 \log n \log mC)$
1972	Capacity scaling	$m \log C$	$O(m^2 \log C)$
1985	Improved CapS	$m \log C$	$O(mn\log C)$
1970	Shortest path	mn	$O(m^2n)$
1970	level graph	mn	$O(mn^2)$
1983	dynamic trees	mn	$O(mn\log n)$

and the show goes on ...

Year	Method	Worst case	Discovered by
1951	Simplex	$O(mn^2C)$	Dantzig
1955	Augmenting path	O(mnC)	Ford-Fulkerson
•••			
1988	Push-relabel	$O(mn\log(n^2/m))$	Goldberg-Tarjan
•••			
2013	Compact networks	O(mn)	Orlin
2016	Electrical flows	$\tilde{O}(m^{10/7}C^{1/7})$	Madry
20XX			

To keep it simple, cite below when you invoke a max-flow subroutine in hw/exam Maximum flows can be computed in O(mn) time

Another formulation of max-flow problem

Recall. An s-t flow is a function $f: E \to \mathbb{R}$ satisfying

- [Capacity] $\forall e \in E: 0 \le f(e) \le c(e)$
- [Conservation] $\forall v \in V \setminus \{s, t\}$: $\sum_{e \text{ into } v} f(e) = \sum_{e \text{ out of } v} f(e)$

The value of a flow f is $v(f) \coloneqq \sum_{e \text{ out of } s} f(e)$

Max-Flow ProblemReal-value variables $\vec{f} = \{f_e : e \in E\}$ Maximize: $v(\vec{f})$ Subject to: $0 \le f_e \le c(e), \forall e \in E$ $\sum_{e \text{ into } v} f_e - \sum_{e \text{ out of } v} f_e = 0, \forall v \in V \setminus \{s, t\}$

Linear constraints: no x^2 , xy, sin(x), ...

Input. HW from two courses (xxx & 584/684) due in one day

- Every hour you spend, you earn 1pts on xxx or 5pts on 584/684
- Your brain will explode if you work more than 12hrs on xxx or 15hrs on 5/684

Grade maximization

- Of course, there are only 24 hrs in a day
- Goal. Maximize the total pts you can earn

```
Grade-Maximization
Variables: x_1 (xxx hrs); x_2 (5/684 hrs)
Maximize: x_1 + 5x_2
Subject to: // linear constraints
0 \le x_1 \le 12
0 \le x_2 \le 15
x_1 + x_2 \le 24
```


Linear programming. Optimize a linear objective function subject to linear inequalities.

Linear programming

- Formal definition and representations
- Duality
- Algorithms: simplex, ellipsoid, interior point

Why significant?

- Design poly-time algorithms & approximation algorithms
- Wide applications: math, economics, business, transportation, energy, telecommunications, and manufacturing

Ranked among most important scientific advances of 20th century

"Standard form" of an LP

• m = # constraints, n = # decision variables. i = 1, ..., m, j = 1, ..., n

Linear programming

- Input: real numbers c_j , a_{ij} , b_i
- Output: real numbers x_i
- Maximize linear objective function subject to linear inequalities
- Feasible vs. optimal soln's.

$$\begin{array}{ll} \mathop{\rm Max} & \sum_{j=1}^n c_j x_j \\ & {\rm Subject \ to: \ // \ linear \ constraints} \\ & \displaystyle \sum_{j=1}^n a_{ij} x_j \leq b_i \quad 1 \leq i \leq m \\ & \quad x_j \geq 0 \quad 1 \leq j \leq n \end{array}$$

$$\begin{array}{l} \mathbf{Max} \ \mathbf{c}^{T} \mathbf{x} \\ \mathbf{Subject to:} \ A \mathbf{x} \leq \mathbf{b} \\ \mathbf{x} \geq \mathbf{0} \end{array} \qquad A = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ a_{21} & \cdots & a_{2n} \\ \cdots & \cdots & \cdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix} \\ \mathbf{c} = \begin{pmatrix} c_{1} \\ c_{2} \\ \cdots \\ c_{n} \end{pmatrix} \ \mathbf{b} = \begin{pmatrix} b_{1} \\ b_{2} \\ \cdots \\ b_{m} \end{pmatrix} \ \mathbf{x} = \begin{pmatrix} x_{1} \\ x_{2} \\ \cdots \\ x_{n} \end{pmatrix} \ \mathbf{0} = \begin{pmatrix} 0 \\ 0 \\ \cdots \\ 0 \end{pmatrix}$$

"Slack form" of an LP: linear equalities

Linear programming: variants

 $\begin{array}{ll} \mathop{\rm Max} \ \sum_{j=1}^n c_j x_j \\ & {\rm Subject \ to: \ // \ linear \ constraints} \\ & \displaystyle \sum_{j=1}^n a_{ij} x_j \leq b_i \quad 1 \leq i \leq m \\ & \quad x_j \geq 0 \quad 1 \leq j \leq n \end{array}$

 $\Rightarrow \begin{array}{l} \operatorname{Max} \ \sum_{j=1}^{n} c_{j} x_{j} \\ \text{Subject to: // linear constraints} \\ s_{i} = b_{i} - \sum_{j=1}^{n} a_{ij} x_{j} \quad 1 \leq i \leq m \\ (\operatorname{slack vars}) s_{i} \geq 0 \quad 1 \leq i \leq m \\ x_{i} \geq 0 \quad 1 \leq j \leq m \end{array}$

Other equivalent variations

- Minimization vs. maximization
- Variables without nonnegativity constraints
- \geq vs. \leq