
Portland State University

Lecture 13
• Amortized analysis

• Network flow

W’21 CS 584/684

Algorithm Design &

Analysis

Fang Song

Recap: minimum spanning tree algorithms

2

๏ Prim’s algorithm

• Start with some node . Grow a tree from outward. Add to such that

 cheapest and .

• Correctness follows by cut property.

• Implementation by priority queue: .

s T s v T
w(u, v) u ∈ T

O((m + n)log n)

๏ Kruskal’s algorithm

• Start with . Insert edges in ascending order of weights,

unless it creates a cycle.

• Implementation by disjoint-set (Union-Find) data structure:

.

T = ∅

O(m log m + n log n)

An excursion to data structures
& amortized analysis

3

Disjoint-set data structure

4

๏ Goal. Three operations on a collection of disjoint sets.

• Make-set(): create a singleton set containing .

• Find-set(): return the “name” of the unique set containing .

• Union(): merge the sets containing and respectively.

x x
x x

x, y x y

๏ Performance parameters.

• number of calls to the three operations.

• : number of elements.

k :
n

Simple implementation by an array

5

๏ Array : name of the set containing .

• FIND(x): .

• UNION(x, y): update all nodes in sets containing and .

Component[x] x
O(1)

Θ(n) x y

๏ Some improvement

• Maintain the list of elements in each set.

• Choose the name for the union to be the name of the larger set [so changes are fewer].

• ! UNION(x, y): still in the worst-case.Θ(n)

But this rarely happens …

Can we refine the analysis?

Amortized analysis

6

๏ Determine worst-case running time of a sequence of data structure operations.

• Standard (worst-case) analysis can be too pessimistic if the only way to encounter an expensive

operation is when there were lots of previous cheap operations.

k

๏ Theorem. A sequence of costs . [contrast w.]

๏ Proof. [Aggregate method]

• Start from singletons. After unions, at most nodes involved.

• Any changes only when merged with a larger set, i.e., change of name implies

doubling of the set size.

• " For any , # changes at most .

• " for a sequence of Unions [i.e., each has amortized cost].

k Union O(k log k) O(k2)

k 2k
Component[x]

x log2(2k)
O(k log k) k O(log k)

Parent-link representation

7

๏ Represent each set as a tree

• Each element has an explicit parent pointer in the tree.
• The root (points to itself) serves as the “name”.
• FIND(x): find the root of the tree containing .
• UNION(x, y): merge trees containing and .

x
x y

1Make-set 2 3 7…

Union(1,7) 1

7

Union(1,2) 1

7

2 1

2

7?

Naive linking

8

๏ Link root of first tree to the root of second tree.

2

1

7 Union(1,2)

1

2

7

๏ Observation. A Union can take in the worst case.

• Find root of this tree: determined by the height of the tree.

Θ(n)

Link-by-size

9

๏ Maintain a tree size (# of nodes in the set) for each root note; link smaller tree to
larger.

2

1

7 Union(1,2)

๏ Observation. Union takes in the worst case.

๏ Proof. [NB. Time height]

• Show by induction: for every root node , .

• .

O(log n)
∝

r size[r] ≥ 2height(r)

⇒ height ≤ log n

1

7

2

1

7

25

6Union(3,5)9

8

34

Disjoint-set summary

10

Array/naive
linking

Link-by-size
(balanced tree)

Link-by-size w/ path-
compressing

Find

Union

Amoretized

Θ(1)

Θ(k log k)

Θ(n)
Θ(log n)

Θ(k log k)

Θ(log n)
Θ(log n)

Θ(kα(k))

Θ(log n)

: inverse Ackermann function;

 for any practical cases.

α(n)
≤ 4

Network flow

11

๏ Soviet Rail Network 1955

12

Schrijver, Alexander. "On the history of the transportation and maximum
flow problems." Mathematical Programming 91.3 (2002): 437-445.

1. What is the maximum amount of
stuff that could be moved from
USSR into Europe?

2. What is the cheapest way to disrupt
the network by blowing up train
tracks (i.e., the bottleneck)?

Maximum flow and minimum cut

13

๏ Max flow and min cut

• Two very rich algorithmic problems.

• Cornerstone in combinatorial optimization.

• Beautiful mathematical duality.

๏ Applications (by reductions)

• Data mining.
• Airline scheduling.
• Bipartite matching, stable matching.
• Image segmentation, clustering, multi-camera scene reconstruction.
• Network intrusion detection, Data privacy.

Flow network

14

๏ Abstraction for material flowing through the edges.

• directed graph, no parallel edges.

• Two distinguished nodes: , .

• : capacity of edge , .

G = (V, E)
s = source t = sink

c(e) e ∀e ∈ E

3

2

s t

5

10

15

15

9

8

4

4

6

7

6

15 10

10

10154
30

5

Flows

15

๏ Definition. An flow is a function satisfying

• [Capacity] .

• [Conservation] :

s − t f : E → ℝ+

∀e ∈ E : 0 ≤ f(e) ≤ c(e)
∀v ∈ V − {s, t} ∑

e into v
f(e) = ∑

e out of v
f(e)

3

2

s t

5

10/4

4

6

7

5/0

15/0

4/4

4/0

9/0

15/0

8/4

6/0

30/0
10/0

15/0

15/0 10/0

10/4

๏ Definition. The value of a flow is f v(f) := ∑
e outof s

f(e)

capacity

flow

Value v(f) = 4 + 0 + 0 = 4

Flows, cont’d

16

๏ Definition. An flow is a function satisfying

• [Capacity] .

• [Conservation] :

s − t f : E → ℝ+

∀e ∈ E : 0 ≤ f(e) ≤ c(e)
∀v ∈ V − {s, t} ∑

e into v
f(e) = ∑

e out of v
f(e)

3

2

s t

5

10/10

4

6

7

5/3

15/11

4/4

4/0

9/6

15/0

8/8

6/1

30/11
10/10

15/0

15/0 10/6

10/8

๏ Definition. The value of a flow is f v(f) := ∑
e outof s

f(e)

capacity

flow

Value v(f) = 10 + 3 + 11 = 24

Maximum Flow problem

17

๏ Find flow of maximum value.

• N.B. It has to be a valid flow, i.e., satisfying both Capacity and Conservation constraints.

s − t

3

2

s t

5

10/10

4

6

7

5/4

15/14

4/0

4/0

9/9

15/1

8/8

6/4

30/14
10/10

15/0

15/0 10/9

10/9

capacity

flow

Max flow v(f) = 28

Cuts

18

๏ Recall. A cut is a subset of vertices.

๏ Def. cut: partition of with and .

๏ Def. Capacity of cut :
s − t (A, B = V − A) V s ∈ A t ∈ B

(A, B) cap(A, B) = ∑
e out of A

c(e)

3

2

s t

5

10

15

15

9

8

4

4

6

7

6

15 10

10

10154
30

5

A

A = {s,2}, B = {3,4,…, t}

cap(A, B) = 9 + 15 + 4 + 5 + 15 = 48

Cuts, cont’d

19

๏ Recall. A cut is a subset of vertices.

๏ Def. cut: partition of with and .

๏ Def. Capacity of cut :
s − t (A, B = V − A) V s ∈ A t ∈ B

(A, B) cap(A, B) = ∑
e out of A

c(e)

3

2

s t

5

10

15

15

9

8

4

4

6

7

6

15 10

10

10154
30

5

A

A = {s,3,4,7}, B = {2,5,6,t}

cap(A, B) = 10 + 8 + 10 = 28

Minimum cut problem

20

๏ Find cut of minimum capacity value.s − t

3

2

s t

5

10

15

15

9

8

4

4

6

7

6

15 10

10

10154
30

5

A

Min cut cap(A, B) = 28

Max flow Min cut

21

How to they relate?

Flow value lemma

22

๏ Flow-value lemma. Let be any flow, and let be any cut. Then the net
flow across the cut is equal to the amount leaving (i.e., value of flow).

f (A, B) s − t
s

3

2

s t

5

10/10

4

6

7

5/3

15/11

4/4

4/0

9/6

15/0

8/8

6/1

30/11
10/10

15/0

15/0 10/6

10/8

capacity

flow

Net flow = 10 − 4 + 8 − 0 + 10 = 24

v(f) = 24

∑
e out of A

f(e) − ∑
e into A

f(e) = v(f)

Flow value lemma: proof

23

๏ Flow-value lemma. Let be any flow, and let be any cut.f (A, B) s − t

∑
e out of A

f(e) − ∑
e into A

f(e) = v(f)

๏ Proof.

v(f) = ∑
e out of s

f(e)

= ∑
v∈A

∑
e out of v

f(e) − ∑
e into v

f(e)

= ∑
e out of A

f(e) − ∑
e into A

f(e)

// definition

// all but produce by conservationv = s 0

Weak duality

24

๏ Weak duality. Let be any flow, and let be any cut. Then the value of
the flow is at most the capacity of the cut.

f (A, B) s − t

v(f) ≤ cap(A, B)

3

2

s t

5

10

15

15

9

8

4

4

6

7

6

15 10

10

10154
30

5

,

 any flow, value

A = {s} cap(A, B) = 30

⇒ ≤ 30

Weak duality: proof

25

๏ Weak duality. Let be any flow, and let be any cut.f (A, B) s − t

v(f) ≤ cap(A, B)

๏ Proof.

v(f) = ∑
e out of A

f(e) − ∑
e into A

f(e)

≤ ∑
e out of A

f(e)

≤ ∑
e out of A

c(e)

= cap(A, B)

// flow-value lemma

// capacity constraint

// definition of capacity

When does equality hold?

1. No flow coming into A

2. Flows saturate outgoing edges

Weak duality certificate of optimality⇒

26

๏ Corollary of weak duality. Let be any flow, and let be any cut. If
, then is a max flow, and a min cut.

f (A, B) s − t
v(f) = cap(A, B) f (A, B)

3

2

s t

5

10/10

4

6

7

5/4

15/14

4/0

4/0

9/9

15/1

8/8

6/4

30/14
10/10

15/0

15/0 10/9

10/9
When does equality hold?

1. No flow coming into A

2. Flows saturate outgoing edges

Value of flow = 28

Cut capacity = 28

 value of flow ⇒ ≤ 28

Max-flow Min-cut theorem

27

[Strong duality]
Theorem. Value of max flow = capacity of min cut.

Stay tuned for an elegant proof next time!

Scratch

