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Recap: minimum spanning tree algorithms
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๏ Prim’s algorithm 
• Start with some node . Grow a tree  from  outward. Add  to  such that 

 cheapest and . 
• Correctness follows by cut property.  
• Implementation by priority queue: .

s T s v T
w(u, v) u ∈ T

O((m + n)log n)

๏ Kruskal’s algorithm 
• Start with . Insert edges in ascending order of weights, 

unless it creates a cycle.  
• Implementation by disjoint-set (Union-Find) data structure: 

. 

T = ∅

O(m log m + n log n)



An excursion to data structures 
& amortized analysis
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Disjoint-set data structure
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๏ Goal. Three operations on a collection of disjoint sets.  
• Make-set( ): create a singleton set containing .  
• Find-set( ): return the “name” of the unique set containing .  
• Union( ): merge the sets containing  and  respectively.

x x
x x

x, y x y

๏ Performance parameters. 
•  number of calls to the three operations.  
• : number of elements. 

k :
n



Simple implementation by an array

5

๏ Array : name of the set containing .  
• FIND(x): . 

• UNION(x, y):  update all nodes in sets containing  and . 

Component[x] x
O(1)

Θ(n) x y

๏ Some improvement 
• Maintain the list of elements in each set.  
• Choose the name for the union to be the name of the larger set [so changes are fewer].  
• ! UNION(x, y): still  in the worst-case.Θ(n)

But this rarely happens …  
Can we refine the analysis? 



Amortized analysis
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๏ Determine worst-case running time of a sequence of  data structure operations. 
• Standard (worst-case) analysis can be too pessimistic if the only way to encounter an expensive 

operation is when there were lots of previous cheap operations. 

k

๏ Theorem. A sequence of   costs . [contrast w. ] 
๏ Proof. [Aggregate method] 

• Start from singletons. After  unions, at most  nodes involved.  
• Any  changes only when merged with a larger set, i.e., change of name implies 

doubling of the set size.  
• " For any , # changes at most .  

• "  for a sequence of  Unions [i.e., each has amortized cost ]. 

k Union O(k log k) O(k2)

k 2k
Component[x]

x log2(2k)
O(k log k) k O(log k)



Parent-link representation
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๏ Represent each set as a tree 
• Each element has an explicit parent pointer in the tree.
• The root (points to itself ) serves as the “name”.
• FIND(x): find the root of the tree containing . 
• UNION(x, y): merge trees containing  and .

x
x y

1Make-set 2 3 7…

Union(1,7) 1

7

Union(1,2) 1

7

2 1

2

7?



Naive linking
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๏ Link root of first tree to the root of second tree. 

2

1

7 Union(1,2)

1

2

7

๏ Observation. A Union can take  in the worst case. 
• Find root of this tree: determined by the height of the tree. 

Θ(n)



Link-by-size

9

๏ Maintain a tree size (# of nodes in the set) for each root note; link smaller tree to 
larger. 

2

1

7 Union(1,2)

๏ Observation. Union takes  in the worst case. 
๏ Proof. [NB. Time  height] 

• Show by induction: for every root node , .  

•  . 

O(log n)
∝

r size[r] ≥ 2height(r)

⇒ height ≤ log n

1

7

2

1

7

25

6Union(3,5)9

8

34



Disjoint-set summary
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Array/naive 
linking

Link-by-size 
(balanced tree)

Link-by-size w/ path-
compressing

Find

Union

Amoretized

Θ(1)

Θ(k log k)

Θ(n)
Θ(log n)

Θ(k log k)

Θ(log n)
Θ(log n)

Θ(kα(k))

Θ(log n)

: inverse Ackermann function; 
 for any practical cases.

α(n)
≤ 4



Network flow
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๏ Soviet Rail Network 1955
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Schrijver, Alexander. "On the history of the transportation and maximum 
flow problems." Mathematical Programming 91.3 (2002): 437-445.

1. What is the maximum amount of 
stuff that could be moved from 
USSR into Europe? 

2. What is the cheapest way to disrupt 
the network by blowing up train 
tracks (i.e., the bottleneck)? 



Maximum flow and minimum cut 
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๏ Max flow and min cut 
• Two very rich algorithmic problems. 

• Cornerstone in combinatorial optimization.  

• Beautiful mathematical duality.

๏ Applications (by reductions) 
• Data mining.
• Airline scheduling.
• Bipartite matching, stable matching.
• Image segmentation, clustering, multi-camera scene reconstruction. 
• Network intrusion detection, Data privacy.



Flow network
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๏ Abstraction for material flowing through the edges.  
•  directed graph, no parallel edges.  
• Two distinguished nodes: , .  
• : capacity of edge , . 

G = (V, E)
s = source t = sink

c(e) e ∀e ∈ E
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Flows
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๏ Definition. An  flow is a function  satisfying  
• [Capacity] .  

• [Conservation] : 

s − t f : E → ℝ+

∀e ∈ E : 0 ≤ f(e) ≤ c(e)
∀v ∈ V − {s, t} ∑

e into v
f(e) = ∑

e out of v
f(e)

3

2

s t

5

10/4
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๏ Definition. The value of a flow  is f v( f ) := ∑
e outof s

f(e)

capacity

flow

Value v( f ) = 4 + 0 + 0 = 4



Flows, cont’d
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๏ Definition. An  flow is a function  satisfying  
• [Capacity] .  

• [Conservation] : 

s − t f : E → ℝ+

∀e ∈ E : 0 ≤ f(e) ≤ c(e)
∀v ∈ V − {s, t} ∑

e into v
f(e) = ∑

e out of v
f(e)

3

2

s t
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๏ Definition. The value of a flow  is f v( f ) := ∑
e outof s

f(e)

capacity

flow

Value v( f ) = 10 + 3 + 11 = 24



Maximum Flow problem 
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๏ Find  flow of maximum value.  
• N.B. It has to be a valid flow, i.e., satisfying both Capacity and Conservation constraints. 

s − t

3

2

s t
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capacity

flow

Max flow v( f ) = 28



Cuts
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๏ Recall. A cut is a subset of vertices. 
๏ Def.  cut:  partition of  with  and .  

๏ Def. Capacity of cut : 
s − t (A, B = V − A) V s ∈ A t ∈ B

(A, B) cap(A, B) = ∑
e out of A

c(e)
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A
 A = {s,2}, B = {3,4,…, t}

cap(A, B) = 9 + 15 + 4 + 5 + 15 = 48



Cuts, cont’d
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๏ Recall. A cut is a subset of vertices. 
๏ Def.  cut:  partition of  with  and .  

๏ Def. Capacity of cut : 
s − t (A, B = V − A) V s ∈ A t ∈ B

(A, B) cap(A, B) = ∑
e out of A

c(e)

3

2

s t
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A

 A = {s,3,4,7}, B = {2,5,6,t}

cap(A, B) = 10 + 8 + 10 = 28



Minimum cut problem
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๏ Find  cut of minimum capacity value.s − t
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A

Min cut cap(A, B) = 28



Max flow    Min cut
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How to they relate?



Flow value lemma
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๏ Flow-value lemma. Let  be any flow, and let  be any  cut. Then the net 
flow across the cut is equal to the amount leaving  (i.e., value of flow). 

f (A, B) s − t
s

3

2

s t

5

10/10
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5/3

15/11

4/4

4/0

9/6

15/0

8/8
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30/11
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15/0 10/6
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capacity

flow

Net flow = 10 − 4 + 8 − 0 + 10 = 24

v( f ) = 24

∑
e out of A

f(e) − ∑
e into A

f(e) = v( f )



Flow value lemma: proof
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๏ Flow-value lemma. Let  be any flow, and let  be any  cut.f (A, B) s − t

∑
e out of A

f(e) − ∑
e into A

f(e) = v( f )

๏ Proof.

v( f ) = ∑
e out of s

f(e)

= ∑
v∈A

∑
e out of v

f(e) − ∑
e into v

f(e)

= ∑
e out of A

f(e) − ∑
e into A

f(e)

// definition

// all but  produce  by conservationv = s 0



Weak duality
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๏ Weak duality. Let  be any flow, and let  be any  cut. Then the value of 
the flow is at most the capacity of the cut.

f (A, B) s − t

v( f ) ≤ cap(A, B)
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,  

 any flow, value 

A = {s} cap(A, B) = 30

⇒ ≤ 30



Weak duality: proof
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๏ Weak duality. Let  be any flow, and let  be any  cut.f (A, B) s − t

v( f ) ≤ cap(A, B)

๏ Proof.

v( f ) = ∑
e out of A

f(e) − ∑
e into A

f(e)

≤ ∑
e out of A

f(e)

≤ ∑
e out of A

c(e)

= cap(A, B)

// flow-value lemma

// capacity constraint

// definition of capacity

When does equality hold? 

1. No flow coming into A 

2. Flows saturate outgoing edges



Weak duality  certificate of optimality⇒
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๏ Corollary of weak duality. Let  be any flow, and let  be any  cut. If 
, then  is a max flow, and  a min cut. 

f (A, B) s − t
v( f ) = cap(A, B) f (A, B)
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When does equality hold? 

1. No flow coming into A 

2. Flows saturate outgoing edges

Value of flow = 28 

Cut capacity = 28 

 value of flow ⇒ ≤ 28



Max-flow Min-cut theorem

27

[Strong duality]
Theorem. Value of max flow = capacity of min cut.

Stay tuned for an elegant proof next time!



Scratch


