

W'21 CS 584/684 Algorithm Design & Analysis

Fang Song

Lecture 13

Amortized analysis
Network flow

Recap: minimum spanning tree algorithms

- Prim's algorithm
 - w(u, v) cheapest and $u \in T$.
 - Correctness follows by cut property.
 - Implementation by priority queue: $O((m + n)\log n)$.
- Kruskal's algorithm
 - Start with $T = \emptyset$. Insert edges in ascending order of weights, unless it creates a cycle.
 - Implementation by disjoint-set (Union-Find) data structure: $O(m\log m + n\log n).$

• Start with some node s. Grow a tree T from s outward. Add v to T such that

An excursion to data structures & amortized analysis

Disjoint-set data structure

Goal. Three operations on a collection of disjoint sets.

- Make-set(*x*): create a singleton set containing *x*.
- Find-set(*x*): return the "name" of the unique set containing *x*. •
- Union(x, y): merge the sets containing x and y respectively.

Performance parameters.

- *k* : number of calls to the three operations.
- *n*: number of elements.

Simple implementation by an array

Array Component x: name of the set containing x.

- FIND(x): O(1).lacksquare
- UNION(x, y): $\Theta(n)$ update all nodes in sets containing x and y. ullet

Some improvement

- Maintain the list of elements in each set. \bullet
- Choose the name for the union to be the name of the larger set [so changes are fewer].
- \otimes UNION(x, y): still $\Theta(n)$ in the worst-case. •

But this rarely happens ... Can we refine the analysis?

Amortized analysis

• operation is when there were lots of previous cheap operations.

• Theorem. A sequence of k Union costs $O(k \log k)$. [contrast w. $O(k^2)$] Proof. [Aggregate method]

- Start from singletons. After k unions, at most 2k nodes involved.
- doubling of the set size.
- \rightarrow For any x, # changes at most $\log_2(2k)$.
- $\rightarrow O(k \log k)$ for a sequence of k Unions [i.e., each has amortized cost $O(\log k)$]. ullet

 \bullet Determine worst-case running time of a sequence of k data structure operations. Standard (worst-case) analysis can be too pessimistic if the only way to encounter an expensive

• Any *Component*[x] changes only when merged with a larger set, i.e., change of name implies

Parent-link representation

Represent each set as a tree

- Each element has an explicit parent pointer in the tree.
- The root (points to itself) serves as the "name".
- FIND(x): find the root of the tree containing x. lacksquare
- UNION(x, y): merge trees containing x and y. lacksquare

• Link root of first tree to the root of second tree.

• Observation. A Union can take $\Theta(n)$ in the worst case.

• Find root of this tree: determined by the height of the tree.

Naive linking

larger.

- Observation. Union takes $O(\log n)$ in the worst case.
- Proof. [NB. Time \propto height]
 - Show by induction: for every root node *r*, $size[r] \ge 2^{height(r)}$
 - \Rightarrow height $\leq \log n$.

Link-by-size

• Maintain a tree size (# of nodes in the set) for each root note; link smaller tree to

	Array/naive linking	Link-by-size (balanced tree)	Link-by-size w/ path- compressing
Find	Θ(1)	$\Theta(\log n)$	$\Theta(\log n)$
Union	$\Theta(n)$	$\Theta(\log n)$	$\Theta(\log n)$
Amoretized	$\Theta(k \log k)$	$\Theta(k \log k)$	$\Theta(k\alpha(k))$

Disjoint-set summary

 $\alpha(n)$: inverse Ackermann function; \leq 4 for any practical cases.

Network flow

Figure 2

From Harris and Ross [1955]: Schematic diagram of the railway network of the Western Soviet Union and Eastern European countries, with a maximum flow of value 163,000 tons from Russia to Eastern Europe, and a cut of capacity 163,000 tons indicated as "The bottleneck".

Schrijver, Alexander. "On the history of the transportation and maximum flow problems." Mathematical Programming 91.3 (2002): 437-445.

Soviet Rail Network 1955

- What is the maximum amount of stuff that could be moved from USSR into Europe?
- 2. What is the cheapest way to disrupt the network by blowing up train tracks (i.e., the bottleneck)?

Maximum flow and minimum cut

Max flow and min cut

- Two very rich algorithmic problems.
- Cornerstone in combinatorial optimization.
- Beautiful mathematical duality.

Applications (by reductions)

- Data mining.
- Airline scheduling.
- Bipartite matching, stable matching. •
- Image segmentation, clustering, multi-camera scene reconstruction. •
- Network intrusion detection, Data privacy.

Flow network

Abstraction for material flowing through the edges.

- G = (V, E) directed graph, no parallel edges.
- Two distinguished nodes: s = source, t = sink.
- c(e): capacity of edge e, $\forall e \in E$.

Flows

e into *v*

• Definition. An s - t flow is a function $f: E \to \mathbb{R}^+$ satisfying

• [Capacity] $\forall e \in E : 0 \leq f(e) \leq c(e)$.

[Conservation] $\forall v \in V - \{s, t\}$: $\sum f(e)$

Definition. The value of a flow f is v(f)

$$f(e) = \sum_{e \text{ out of } v} f(e)$$
$$f(e) = \sum_{e \text{ out of } s} f(e)$$

Flows, cont'd

• Definition. An s - t flow is a function $f : E \to \mathbb{R}^+$ satisfying

e into *v*

• [Capacity] $\forall e \in E : 0 \le f(e) \le c(e)$.

[Conservation] $\forall v \in V - \{s, t\}$: $\sum f(e)$

 $\hfill {f O}$ Definition. The value of a flow f is v(f

$$f(e) = \sum_{e \text{ out of } v} f(e)$$
$$f(e) = \sum_{e \text{ out of } s} f(e)$$

Value
$$v(f) = 10 + 3 + 11 = 24$$

flow
capacity

Maximum Flow problem

• Find s - t flow of maximum value.

• N.B. It has to be a valid flow, i.e., satisfying both Capacity and Conservation constraints.

Max flow v(f) = 28

- Recall. A cut is a subset of vertices.
- Def. s t cut: (A, B = V A) partition of V with $s \in A$ and $t \in B$. • Def. Capacity of cut (A, B): $cap(A, B) = \sum c(e)$

Cuts

e out of A

$$A = \{s, 2\}, B = \{3, 4, \dots, t\}$$
10 $cap(A, B) = 9 + 15 + 4 + 5 + 15 = 48$
10 10 10

Cuts, cont'd

- Recall. A cut is a subset of vertices.
- Def. s t cut: (A, B = V A) partition of V with $s \in A$ and $t \in B$.
- Def. Capacity of cut (A, B): $cap(A, B) = \sum c(e)$

e out of A

 $A = \{s, 3, 4, 7\}, B = \{2, 5, 6, t\}$ cap(A, B) = 10 + 8 + 10 = 2810 10 10

Minimum cut problem

• Find s - t cut of minimum capacity value.

Max flow Min cut How to they relate?

Flow value lemma

flow across the cut is equal to the amount leaving s (i.e., value of flow).

Net flow = 10 - 4 + 8 - 0 + 10 = 24

• Flow-value lemma. Let f be any flow, and let (A, B) be any s - t cut. Then the net

Flow value lemma: proof

• Flow-value lemma. Let f be any flow, and let (A, B) be any s - t cut.

$\sum f(e) - \sum f(e) = v(f)$

e out of A e into A

// definition

Weak duality

the flow is at most the capacity of the cut.

 $v(f) \leq cap(A, B)$

• Weak duality. Let f be any flow, and let (A, B) be any s - t cut. Then the value of

Weak duality: proof

• Weak duality. Let f be any flow, and let (A, B) be any s - t cut. $v(f) \leq cap(A, B)$

Proof. $v(f) = \sum f(e) - \sum f(e) // flow-value lemma$ e out of A e into A $\leq \sum f(e)$ e out of A $\leq \sum c(e) // capacity constraint$ e out of A // definition of capacity = cap(A, B)

When does equality hold?1. No flow coming into A2. Flows saturate outgoing edges

Weak duality \Rightarrow certificate of optimality

v(f) = cap(A, B), then f is a max flow, and (A, B) a min cut.

• Corollary of weak duality. Let f be any flow, and let (A, B) be any s - t cut. If

Value of flow = 28Cut capacity = 28 \Rightarrow value of flow ≤ 28

When does equality hold?

- No flow coming into A
- Flows saturate outgoing edges 2.

Max-flow Min-cut theorem

Theorem. Value of max flow = capacity of min cut. [Strong duality]

MAXIMAL FLOW THROUGH A NETWORK

L. R. FORD, JR. AND D. R. FULKERSON

IRE TRANSACTIONS ON INFORMATION THEORY

A Note on the Maximum Flow Through a Network^{*} P. ELIAS[†], A. FEINSTEIN[‡], AND C. E. SHANNON[§]

1956

Stay tuned for an elegant proof next time!

Scratch