
W’21 CS 584/684

Algorithm Design &
Analysis

Lecture 12

• Minimum spanning tree
• Amortized analysis

Portland State University

Fang Song

Greedy algorithms for MST

§ Kruskal’s. Start with 𝑇 = ∅. Insert edges in ascending
order of weights, unless it creates a cycle.

1

§ Reverse-Delete. Start with 𝑇 = 𝐸. Remove edges in
descending order of weights, unless it disconnects 𝑇.

§ Prim’s. Start with some node 𝑠. Grow a tree 𝑇 from
𝑠 outward. Add 𝑣 to 𝑇 such that 𝑤 𝑢, 𝑣 cheapest
and 𝑢 ∈ 𝑇.

Edge-driven

Node-driven

Sounds familiar? Dijkstra’s?

J In this extremely lucky case, all of them work! But correctness
proofs are non-trivial. We need the following tools to prove them.

Cycles and cuts

§Cycle: set of edges of form 𝑎, 𝑏 , 𝑏, 𝑐 , … , (𝑧, 𝑎).

2

§Cut: a subset of nodes 𝑆 ⊆ 𝑉.

§Cutset 𝐷(𝑆): subset of edges with exactly one endpoint in 𝑆.

1

2 3

7
8

5

46 Ex. Cut 𝑆 = {4,5,8}
Cutset 𝐷(𝑆) = { 4,3 , 5,7 , 5,6 , (7,8)}

Observation: cycle-cut intersection

Claim*. A cycle & a cutset intersect in an even number of edges.

3

§ Proof. A cycle has to leave & enter the cut the same number of
times.

𝑆 𝑉\S𝐶

𝑆

Cut Property

Cut property. Let 𝑆 be a subset of nodes. Let 𝑒 be the min weight
edge with exactly one endpoint in 𝑆. Then any MST 𝑇 contains 𝑒.

4

𝑒

𝑓§ Proof. (exchange argument)
• Suppose 𝑒 does not belong to 𝑇
• Adding 𝑒 to 𝑇 creates a cycle 𝐶
• Edge 𝑒 is both in 𝐶 and in the cutset 𝐷 𝑆
è there exists another edge, say 𝑓, that is in

both 𝐶 and 𝐷. [Claim*]
• 𝑇! ≔ 𝑇 ∪ 𝑒 − {𝑓} is also a spanning tree
• 𝑤" < 𝑤# è 𝑤 𝑇! < 𝑤 𝑇 . Contradiction!

𝑆

Cycle property

5

𝑒

𝑓§ Proof. (exchange argument)
• Suppose 𝑓 belongs to 𝑇
• Deleting 𝑓 creates a cut 𝑆
• Edge 𝑓 is both in 𝐶 and in the cutset 𝐷 𝑆
è there exists another edge, say 𝑒, that is in both

𝐶 and 𝐷.
• 𝑇! ≔ 𝑇 ∪ 𝑒 − {𝑓} is also a spanning tree
• 𝑤" < 𝑤# è 𝑤 𝑇! < 𝑤 𝑇 . Contradiction!

Cycle property. Let 𝐶 be a cycle, and let 𝑓 be the max weight edge
in 𝐶. Then any MST 𝑇 does not contain 𝑓.

Pop quiz 2

Let 𝐺 be a connected undirected graph w. distinct edge weights.

6

• Let 𝑒 be the cheapest edge in 𝐺. Some MST of 𝐺 contains 𝑒?

• Let 𝑒 be the most expensive edge in 𝐺. No MST of 𝐺 contains 𝑒?

True. By cut property

False. Counterexample: if 𝐺 is a
tree, all its edges are in the MST

Prim’s algorithm: correctness

Prim’s algorithm [Janik 1930, Prim 1959]
Start with some node 𝑠. Grow a tree 𝑇 from 𝑠 outward. Add 𝑣 to 𝑇 such that
𝑤 𝑢, 𝑣 cheapest and 𝑢 ∈ 𝑇.

7

§Correctness
• Apply cut property to 𝑇
• When edge weights are distinct, every

edge that is added must be in the MST
è Prim’s algorithm outputs the MST

𝑇
𝑠

Kruskal’s algorithm: correctness

Kruskal’s algorithm [Kruskal 1956]
Start with 𝑇 = ∅. Insert edges in ascending order of weights, unless it creates a cycle.

8

§Correctness

𝑇

𝑒

Case 1. If adding 𝑒 to 𝑇 creates a cycle,
discard 𝑒 according to cycle property.

Case 2. Adding 𝑒 = (𝑢, 𝑣) to 𝑇 according
to cut property. [𝑆 = connected
component of 𝑢]

𝑢

𝑇

𝑒

𝑆

Removing distinct weight assumption

§ Perturbation argument

9

7

6 + 𝜖!
6 + 𝜖"

714

3

8

∑𝜖% ≪ |𝑤(𝑇!) − 𝑤(𝑇)|

Implementing Prim’s
§ Maintain 𝑉 –𝑇 as a priority queue. [as in Dijkstra’s]
§ 𝐾𝑒𝑦(𝑣): weight of the least-weight edge connecting it to a vertex in 𝑇

10

𝑷𝒓𝒊𝒎(𝐺, {𝑤"})
1. 𝑄 ← 𝑀𝑎𝑘𝑒𝑄𝑢𝑒𝑢𝑒(𝑉)
2. 𝑘𝑒𝑦[𝑠] ← 0 for an 𝑠 ∈ 𝑉; 𝑘𝑒𝑦[𝑣] ← ∞ otherwise
3. While Q not empty

𝑢 ← Delete−min(Q) // add u to T
For 𝑣 ∈ 𝐴𝑑𝑗[𝑢] // consider neighbors of u

If 𝑣 ∈ 𝑄 and 𝑤 𝑢, 𝑣 < 𝑘𝑒𝑦[𝑣]
𝑘𝑒𝑦 𝑣 ← 𝑤(𝑢, 𝑣)
Change−key(𝑣)
𝑝𝑎𝑟𝑒𝑛𝑡 𝑣 ← 𝑢

4. Return 𝑇 ← {(𝑣, 𝑝𝑎𝑟𝑒𝑛𝑡(𝑣))}

𝑂(𝑛)

𝑛 Delete-min
𝑚 Change-key

Time: 𝑂(𝑚 + 𝑛 log 𝑛)
Same as Dijkstra’s

§Disjoint-set (aka Union-Find) data structure
• Make−Set(𝑥): create a singleton set containing x.
• Find−Set(𝑥): return the “name” of the unique set

containing 𝑥.
• Union(𝑥, 𝑦):merge the sets containing 𝑥 and 𝑦

respectively.

Implementing Kruskal’s

11

𝑇

Linked list Balanced tree

Find (worst-case) Θ(1) Θ(log 𝑛)
Union (worst-case) Θ(𝑛) Θ(log 𝑛)

Amortized analysis: 𝑘 unions and
𝑘 finds, starting from singleton

Θ(𝑘 log 𝑘) Θ(𝑘 log 𝑘)

Implementing Kruskal’s

12

𝑲𝒓𝒖𝒔𝒌𝒂𝒍(𝐺, {𝑤"})
// 𝑇 ← ∅; sort 𝑚 edges so that 𝑤 𝑒& ≤ 𝑤 𝑒' ≤ ⋯
1. For 𝑣 ∈ 𝑉, MakeSet(𝑣)
2. For 𝑖 = 1,… ,𝑚

𝑢, 𝑣 ← 𝑒% // 𝑖th cheapest edge
If Find−Set 𝑢 ≠ Find−Set(𝑣) // same component?
𝑇 ← 𝑇 ∪ {𝑒%}
Union−Set 𝑢, 𝑣

3. Return 𝑇

𝑂 𝑚 log𝑚

2𝑚 Find-Set
𝑛 Union-Set

Running time: 𝑂 𝑚 log𝑚 + 𝑛 log 𝑛 = 𝑂(𝑚 log 𝑛)

Warning on Greedy algorithms

”You will not receive any credit for any greedy algorithm, on any
homework or exam, even if the algorithm is correct, without a
formal proof of correctness.” –Erickson

I second, and we adopt this policy in this class too!

13

Greedy algorithms are tempting but rarely work!
Only with care (as sanity check or last resort)

Correctness

14

A taste of data structures
& amortized analysis

Implementing Priority Queue

§ (Sorted) Array?
J Change-key: 𝑂 1 ?
L Insert: Ω 𝑛

15

PriorityQueue: set of 𝑛 elements w. associated key values
• Change-key. change key value of an element
• Delete-min. Return the element with smallest key, and remove it.
• Insert/Delete.
• Goal: 𝑂 log 𝑛 time worst-case

3 5 6 9 1012

7

§ (Sorted) Linked list?
J Delete-min: 𝑂(1)
L Insert: Ω 𝑛

3 5

ℎ 𝑡

6 9 10 12

7

Binary heaps

§Binary complete tree. Perfectly balanced, except for bottom level
§Heap-ordered tree. For every node, 𝑘𝑒𝑦 𝑐ℎ𝑖𝑙𝑑 ≥ 𝑘𝑒𝑦(𝑝𝑎𝑟𝑒𝑛𝑡)
§Binary heap. Heap-ordered complete binary tree

16

https://photos.com/featured/doum-palm-hyphaene-
coriacea-and-james-warwick.html?product=poster

18

6

12

8

25

10

11

1721 19

https://photos.com/featured/doum-palm-hyphaene-coriacea-and-james-warwick.html?product=poster

Representing a binary heap

§Array representation. 𝐻 1,2, … , 𝑛
• Parent of node at 𝑘 is at ⌊𝑘/2⌋
• Children of node at 𝑘 is at 2𝑘 and 2𝑘 + 1

17

18

6

12

8

25

10

11

1721 19

6 10 8 1218 11
1 2 3 4 5 6 7 8 9 10 11

25211719𝐻

1

2

4 5 6 7

8 9 10

3

Binary heap: Insert
§ Insert. Add new node at end; repeatedly exchange new node

with its parent until heap order is restored.

18

18

6

12

8

25

10

11

1721 19 7
Add key to heap

(violates heap order)

7

10

6

12

8

2511

1721 19 18 Swim up

Time: 𝑂(log 𝑛)

Binary heap: Delete-min
§ Extract Min at root; upgrade last node to root and “heapify” it!

19

6
6

1812

8

25

10

11

1721 19

Sink down
8

1812

11

25

10

19

1721

Time: 𝑂(log 𝑛)Exchange last node
to root (violates

heap order)

Implementing priority queue

20

Operation Linked list Binary heap Fibonacci Heap*
Insert 𝑂(𝑛) 𝑂(log 𝑛) 𝑂(1)
Delete-

min
𝑂(1) 𝑂(log 𝑛) 𝑂(log 𝑛)

Change-
key

𝑂(𝑛) 𝑂(log 𝑛) 𝑂(1)

Disjoint-set data structure

§Goal. Three operations on a collection of disjoint sets.
• Make−Set(𝑥): create a singleton set containing 𝑥
• Find − Set(𝑥): return “name” of the unique set containing 𝑥
• Union(𝑥, 𝑦):merge the sets containing 𝑥 and 𝑦 respectively

21

§ Performance parameters
• 𝑘=number of calls to the three op’s
• 𝑛=number of elements

Simple implementation by an array

§Array 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡[𝑥]: name of the set containing 𝑥
• FIND(x): 𝑂 1
• UNION(x, y): Θ 𝑛 update all nodes in sets containing 𝑥 and 𝑦

22

§ Some improvement
• Maintain the list of elements in each set.
• Choose the name for the union to be the name of the larger set [so changes are

fewer]
L UNION(x, y): still Θ 𝑛 in the worst-case

But this rarely happens…
can we refine the analysis?

Amortized analysis

Theorem. A sequence of 𝑘 Union costs O 𝑘log 𝑘 . [contrast w. 𝑂 𝑘𝟐]

23

§ Pf. [Aggregate method]
• Start from singletons. After 𝑘 unions, at most 2𝑘 nodes involved.
• Any 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡[𝑥] changes only when merged with a larger set;
• i.e., change of name implies doubling of the set size;
è For any 𝑥, # changes at most log'(2𝑘)
è 𝑂(𝑘 log 𝑘) for a sequence of 𝑘 Unions [i.e., each has amortized cost 𝑂(log 𝑘)].

§Amortized analysis. Determine worst-case running time of a
sequence of 𝑘 data structure operations.
• Standard (worst-case) analysis can be too pessimistic if the only way to encounter

an expensive operation is when there were lots of previous cheap operations

Parent-link representation

§ Represent each set as a tree
• Each element has an explicit parent pointer in the tree
• The root (points to itself) serves as the “name”
• FIND(x): find the root of the tree containing 𝑥
• UNION(x, y): merge trees containing 𝑥 and 𝑦.

24

Make-set 1 2 7…

Union(1,7) 7

1

Union(1,2) 7

1 2

2

7

1

?

Naïve linking

§Naïve linking: link root of first tree to root of second tree

25

2

7

1

27

1

Union(1,2)

§Observation. A Union can take Θ(𝑛) in the worst case
• Find root of this tree: determined by the height of the tree

Link-by-size

§ Link-by-size: maintain a tree size (# of nodes in the set) for each
root node; link smaller tree to larger

26

27

1

Union(1,2)

§Observation. Union takes O(log 𝑛) in the worst case.

7

1 2

§ Pf. [NB. time ∝ height]
• (By Induction) For every root node 𝑟:
𝑠𝑖𝑧𝑒[𝑟] ≥ 2("%)(*(,)

è(worst-case) height ≤ log 𝑛

8

9 4 3

7

1 5 2

6
Union(3,5)

Disjoint-set summary

27

Array / Naïve
linking

Link-by-Size
(Balanced tree)

Link-by-Size w.
path-compressing

Find (worst-case) Θ(1) Θ(log 𝑛) Θ(log 𝑛)
Union (worst-case) Θ(𝑛) Θ(log 𝑛) Θ(log 𝑛)

Amortized cost: 𝑘 unions and 𝑘
finds, starting from singleton

Θ(𝑘 log 𝑘) Θ(𝑘 log 𝑘) Θ(𝑘𝛼(𝑘))

𝛼(𝑛): inverse Ackermann function;
≤ 4 for any practical cases

