@ Portland State University

__

W21 CS 584/684 Lecture 12

* Minimum spanning tree
* Amortized analysis

Algorithm Design &
Analysis

__

--

__

Greedy algorithms for MST

= Kruskal’s. Start with T = @. Insert edges in ascending
order of weights, unless it creates a cycle.

_ Edge-driven

= Reverse-Delete. Start with T = E. Remove edges in
descending order of weights, unless it disconnects T.

* Prim’s. Start with some node s. Grow a tree T from
s outward. Add v to T such that w(u, v) cheapest

andu €T. Sounds familiar? Dijkstra’s?

Node-driven

© In this extremely lucky case, all of them work! But correctness
proofs are non-trivial. We need the following tools to prove them.

1

Cycles and cuts

= Cycle: set of edges of form (a, b), (b, ¢), ..., (2, a).
= Cut: a subset of nodes S € V.

= Cutset D(S): subset of edges with exactly one endpoint in S.

Ex. Cut S = {4,5,8}
Cutset D(S) = {(4,3),(5,7), (5,6),(7,8)}

Observation: cycle-cut intersection

Claim*. A cycle & a cutset intersect in an number of edges.

= Proof. A cycle has to leave & enter the cut the same number of
times.

Cut Property

Cut property. Let S be a subset of nodes. Let e be the min weight
edge with exactly one endpoint in S. Then any MST T contains e.

" Proof. (exchange argument) < / O
* Suppose e does not belong to T
* Adding e to T creates a cycle C
* Edge e is both in C and in the cutset D(S)

=>» there exists another edge, say f, that is in
both C and D. [Claim*] O

 T':=T U {e}— {f}is also a spanning tree
* we < wr = w(T') < w(T).Contradiction!

Cycle property

Cycle property. Let C be a cycle, and let f be the max weight edge
in C. Then any MST T does not contain f.

" Proof. (exchange argument) f O
* Suppose f belongs to T 5
* Deleting f creates a cut S
 Edge f is both in C and in the cutset D(S)

=>» there exists another edge, say e, that is in both
C and D.

« T':=T U{e}—{f}is also a spanning tree O
* we < wr = w(T') <w(T).Contradiction!

Pop quiz 2

Let G be a connected undirected graph w. distinct edge weights.

* Let e be the cheapest edge in G. Some MST of G contains e!?
True. By cut property
or

* Let e be the most expensive edge in G. No MST of G contains e!?

False. Counterexample:if G is a
tree, all its edges are in the MST

Prim’s algorithm: correctness

Prim’s algorithm [Janik 1930, Prim 1959]

Start with some node s. Grow a tree T from s outward.Add v to T such that
w(u,v) cheapestand u € T.

T

» Correctness
* Apply cut property to T
* When edge weights are distinct, every
edge that is added must be in the MST
=>» Prim’s algorithm outputs the MST

Kruskal’s algorithm: correctness

Kruskal's algorithm [Kruskal 1956]

Start with T = Q. Insert edges in ascending order of weights, unless it creates a cycle.

= Correctness

Case 1.If adding e to T creates a cycle, Case 2.Adding e = (u, V) to T according

discard e according to cycle property. ~ to cut property. [5 = connected
component of u]

Removing distinct weight assumption

» Perturbation argument

6 +
C/ 6 +
o
14 7
Q 8
3

2e L [w(T") = w(T)

Implementing Prim’s

= Maintain VV - T as a priority queue. [as in Dijkstra’s]
= Key(v): weight of the least-weight edge connecting it to a vertex in T

Prim(G,{w,})
1. Q « MakeQueue(V) } 0(n)
2. key|s] < 0forans €V; key|v] « o otherwise
3. While Q not empty |
u < Delete—min(Q) //adduto T
For v € Adj|u] // consider neighbors ofu| 75 Delete-min
IfveQandw(u,v) < key[v] e Change-key
key|v] « w(u,v)
Change—key(v)
parent(v) « u
4. ReturnT <« {(v,parent(v))} Time: O((m + n)logn)
Same as Dijkstra’s

—

10

Implementing Kruskal’s

= Disjoint-set (aka Union-Find) data structure T
* Make—Set(x): create a singleton set containing x.

* Find—Set(x): return the “name” of the unique set
containing x.

* Union(x, y): merge the sets containing x and y
respectively.

| Linkedlist

Find (worst-case) 0(1) O(logn)
Union (worst-case) O(n) O(logn)
Amortized analysis: k unions and 0(klogk) O(klogk)

k finds, starting from singleton

11

Implementing Kruskal’s

Kruskal(G,{w,})

// T « @; sort m edges so that w(e;) < w(ey) < - } O(mlogm)
1. Forv € V, MakeSet(v)
& Fori=1,.. m N

(u,v) < e; // ith cheapest edge 2m Find-Set
. . . . > L .
If Find—Set(u) # Find—Set(v) // same component* n Union-Set
T «<T U {ei}
Union—Set(u, v)]
3. Return T

Running time: O(mlogm + nlogn) = O(mlogn)

12

Warning on Greedy algorithms

Correctness
@il ooy oen solfiSon

. . NOT GUARANTEED
Greedy algorithms are tempting but rarely work! el e A

Only with care (as sanity check or last resort)

"You will not receive any credit for any greedy algorithm, on any
homework or exam, even if the algorithm is correct, without a
formal proof of correctness.” —Erickson

| second, and we adopt this policy in this class tool!

13

A taste of data structures
& amortized analysis

Implementing Priority Queue

PriorityQueue: set of n elements w. associated key values
* Change-key. change key value of an element
* Delete-min. Return the element with smallest key, and remove it.
* Insert/Delete.
* Goal: O(logn) time worst-case

= (Sorted) Array? = (Sorted) Linked list?
© Change-key: 0(1)? © Delete-min: 0(1)
® Insert: Q(n) ® Insert: Q(n)
3| 5/619[1012 315l Tel—l9) 10 —12

SR

15

Binary heaps

= Binary complete tree. Perfectly balanced, except for bottom level
* Heap-ordered tree. For every node, key(child) = key(parent)
= Binary heap. Heap-ordered complete binary tree

https://photos.com/featured/doum-palm-hyphaene-
coriacea-and-james-warwick.html?product=poster

16

https://photos.com/featured/doum-palm-hyphaene-coriacea-and-james-warwick.html?product=poster

Representing a binary heap

= Array representation. H[1,2, ..., n] 1
* Parent of node at k is at |k /2]
e Children of node at k is at 2k and 2k + 1

l 4
-7 -7

17

Binary heap: Insert

= Insert. Add new node at end; repeatedly exchange new node
with its parent until heap order is restored.

Time: O(logn)

Add key to heap
(violates heap order)

@ @@ @ Swim up

18

Binary heap: Delete-min
= Extract Min at root; upgrade last node to root and “heapity” it!

Sink down

to root (violates
heap order)

Exchange last node Time: O(logn)
o ©

19

Implementing priority queue

Linked list | Binary heap | Fibonacci Heap*

Insert O(n) O (logn) 0(1)
Delete- 0(1) O (logn) O (logn)
min
Change- O(n) O (logn) 0(1)

key

20

Disjoint-set data structure

= Goal. Three operations on a collection of disjoint sets.
* Make—Set(x): create a singleton set containing x
* Find — Set(x): return “name” of the unique set containing x
* Union(x, y): merge the sets containing x and y respectively

» Performance parameters
* k=number of calls to the three op’s
* n=number of elements

21

Simple implementation by an array

= Array Component[x]: name of the set containing x
 FIND(X): 0(1)
* UNION(X, ¥): O(n) update all nodes in sets containing x and y

= Some improvement
* Maintain the list of elements in each set.

* Choose the name for the union to be the name of the larger set [so changes are
fewer]

@ UNION(x, y):still @(n) in the worst-case

T But this rarely happens...
can we refine the analysis?

22

Amortized analysis

= Amortized analysis. Determine worst-case running time of a
sequence of k data structure operations.

* Standard (worst-case) analysis can be too pessimistic if the only way to encounter
an expensive operation is when there were lots of previous cheap operations

Theorem. A sequence of k Union costs O(klog k). [contrast w. O(k?)]
= Pf. [Aggregate method]

* Start from singletons. After k unions, at most 2k nodes involved.

* Any Component|x] changes only when merged with a larger set;

* i.e., change of name implies doubling of the set size;

=>» For any x, # changes at most log,(2k)

=>» O(klogk) for a sequence of k Unions [i.e., each has amortized cost O(logk)].

23

Parent-link representation

= Represent each set as a tree
* Each element has an explicit parent pointer in the tree
* The root (points to itself) serves as the “name”
* FIND(X): find the root of the tree containing x
* UNION(X, y): merge trees containing x and y.

Make-set @ @ @
Union(1,7) f Union(1,2) & ’

Naive linking

= Naive linking: link root of first tree to root of second tree

@ Union(1,2) > ? """"" ;

= Observation. A Union can take ©(n) in the worst case
* Find root of this tree: determined by the height of the tree

Link-by-size

= Link-by-size: maintain a tree size (# of nodes in the set) for each
root node; link smaller tree to larger

@ Union(1,2)

= Pf. [NB. time « height]

* (By Induction) For every root node r:
size[r] = 2helght()

=>» (worst-case) height < logn

26

Disjoint-set summary

Array / Naive | Link-by-Size Link-by-Size w.
linking (Balanced tree) | path-compressing

Find (worst-case) 0(1) O(logn) O(logn)
Union (worst-case) O(n) O(logn) O(logn)
Amortized cost: k unionsand k O(klogk) O(klogk) O(ka(k))

finds, starting from singleton

a(n): inverse Ackermann function;
< 4 for any practical cases

27

