
W’21 CS 584/684

Algorithm Design &
Analysis

Lecture 11

• Dijkstra’s algorithm cont’d
• Interval scheduling
• Minimum spanning tree

Portland State University

Fang Song

Reflection on Dijkstra: greedy stays ahead

1

𝑠
𝑢

𝑣

Known
Region

§Known region R: in which the shortest distance to 𝑠 is known
§Growing R: adding 𝑣 that has the shortest distance to 𝑠
§How to Identify 𝑣? The one that minimizes 𝑑 𝑢 + 𝑙(𝑢, 𝑣) for 𝑢 ∈ 𝑅

Shortest path to some 𝑢 in known region,
followed by a single edge (𝑢, 𝑣)

𝑫𝒊𝒋𝒌(𝑮, 𝒔) // initialize 𝑑(𝑠) = 0, 𝑑 𝑢 = ∞ , R=∅
While R ≠ 𝑉

Pick 𝑣 ∉ 𝑅 w. smallest 𝑑(𝑣) // by Priority Q
Add 𝑣 to 𝑅
For all edges 𝑣,𝑤 ∈ 𝐸
If 𝑑 𝑣 > 𝑑 𝑢 + 𝑙(𝑢, 𝑣)

𝑑 𝑣 ← 𝑑 𝑢 + 𝑙(𝑢, 𝑣)

Contrast with Bellman-Ford

2

OPT 𝑖, 𝑣 = min OPT 𝑖 − 1, 𝑣 , min
!→#∈%

{OPT 𝑖 − 1,𝑤 + 𝑙!→#}

§Bellman-Ford (Dynamic programming) 𝑂(𝑚𝑛)

𝑑 𝑣 = min
&∈'

𝑑 𝑢 + 𝑙(𝑢, 𝑣)

§Dijkstra (Greedy) 𝑂(𝑚 + 𝑛 log 𝑛)

• Positive weight: no need to wait; additional edges in a path do not help.

vGlobal vs. Local
• Dijkstra’s requires global information: known region & which to add
• Bellman-Ford uses only local knowledge of neighbors, suits distributed setting

Network routing: distance-vector protocol

3

§Communication network
• Nodes: routers
• Edges: direct communication links
• Cost of edge: delay on link. naturally nonnegative, but

Bellman-Ford used anyway!

§Distance-vector protocol [“routing by rumor”]
• Each router maintains a vector of shortest-path lengths to every other node

(distances) and the first hop on each path (directions).
• Algorithm: each router performs separate computations for each potential

destination node.

§ Path-vector protocol: coping with dynamic costs.
• Border Gateway Protocol (BGP).

https://tools.ietf.org/html/rfc4271

Correctness of Dijkstra’s algorithm

Invariant. For each node 𝑢 ∈ 𝑅, 𝑑(𝑢) is
the length of a shortest 𝑠 − 𝑢 path

4

𝑠
𝑢

𝑣

Known Region 𝑅

𝑃

𝑄′
Proof. (By induction on size of R)
§Base case: |𝑅| = 1 trivial
§ Induction hypothesis: true for 𝑅 = 𝑘 ≥ 1
§ Show |𝑅| = 𝑘 + 1.

• Let 𝑣 be the next node added to 𝑅 and (𝑢, 𝑣) be the chosen edge. Call
this 𝑠 − 𝑢 − 𝑣 path 𝑃.
• Consider any 𝑠 − 𝑣 path 𝑄. [Next show it’s no shorter than 𝑃]
• Let (𝑥, 𝑦) be the first edge in 𝑄 leaving 𝑅; let 𝑄’ be the 𝑠 − 𝑥 segment.
• 𝑙 𝑄 ≥ 𝑙 𝑄(+ 𝑙 𝑥, 𝑦 ≥ 𝑑 𝑥 + 𝑙(𝑥, 𝑦) ≥ 𝑙(𝑃); because Dijkstra’s

picked 𝑣 in this iteration (node outside 𝑅 with shortest distance to 𝑠)

𝑥
𝑄

𝑦

Recall: weighted interval scheduling

5

§ Input. 𝑛 jobs; job 𝑗 starts at 𝑠!, finishes at 𝑓!, weight 𝑤!
§Output. Subset of mutually compatible jobs of maximum weight

𝑎
𝑏

𝑐
𝑑
𝑒

𝑓
𝑔

ℎ
0 1 2 3 4 5 6 7 8 9 10 11 Time

𝑠)
𝑤)

𝑓)
Today

𝑂(𝑛log𝑛) Greedy algorithm for 𝑤) = 1.

§DP algorithm 𝑂(𝑛 log 𝑛)

Greedy strategies

§Greedy: be lazy & pick the next compatible job that “looks nice“
• Earliest start time: ascending order of 𝑠).
• Earliest finish time: ascending order of 𝑓).
• Shortest interval: ascending order of 𝑓) − 𝑠).
• Fewest conflicts: the one that conflicts the least number of jobs runs first.

6

Recall. DP recurrence.

OPT 𝑗 = \
0 if 𝑗 = 0

max OPT 𝑗 − 1 ,𝑤) + OPT 𝑝𝑟𝑒 𝑗 otherwise

OPT j = value of optimal solution to jobs 1,2, … , j

§ Exercise. Find counterexamples for each strategy (if possible)

Greedy: counterexamples

L Earliest start time:

7

L Shortest interval:

L Fewest conflicts:

J Earliest finishing time

Greedy Algorithm: earliest finishing time

§ Running time: 𝑂(𝑛 log 𝑛)

8

IntScheduling ({𝑠), 𝑓)})
1. Sort by finishing time so that 𝑓* ≤ 𝑓+ ≤ ⋯ ≤ 𝑓,
2. 𝐴 ← ∅ // set of selected jobs
3. For 𝑗 = 1,… , 𝑛

If 𝑗 compatible with A
𝐴 ← 𝐴 ∪ {𝑗}

𝑛×𝑂(1)

𝑂(𝑛log𝑛)

§Correctness: proof by contradiction
• Suppose greedy is not optimal.
• Consider an optimal strategy: one that agrees with Greedy for as many initial jobs

as possible.
• Look at the first place that they differ: show a new optimal that agrees with

greedy more.

Greedy Algorithm: correctness

9

Proof (by contradiction): Suppose greedy is not optimal
• Let 𝑖*, 𝑖+, … , 𝑖- denote set of jobs selected by greedy.
• Let 𝑗*, 𝑗+, … , 𝑗. be set of jobs in the optimal solution OPT where 𝑖* = 𝑗*, 𝑖+ =
𝑗+, … , 𝑖/ = 𝑗/ for the largest possible value of 𝑟.

𝑖* 𝑖+ 𝑖/ 𝑖/0*Greedy

𝑗* 𝑗+ 𝑖/ 𝑗/0* …OPT
𝑗* 𝑗+ 𝑖/ …𝑖/0*OPT’

• Sub 𝑖/0* for 𝑗/0* in OPT: still feasible and optimal (OPT’); but agrees with Greedy
at 𝑟 + 1 positions; contradicts the maximality of 𝑟.

Interval Partitioning Problem

Scheduling classes
§ Input. Lectures {𝑠! , 𝑓!}
§Output. Minimum number of classrooms to schedule all lectures

so that no two occur at the same time in the same room.

10

𝑎
𝑏

𝑐
ℎ

𝑑 𝑔
𝑒 𝑗

𝑖𝑓

9: 00 10 11 12: 00 13 14 15 16 17: 00

1

2

3

4

Rm #

10 lectures scheduled in 4 classroomsCan you do better?

Interval Partitioning Problem

Scheduling classes
§ Input. Lectures {𝑠! , 𝑓!}
§Output. Minimum number of classrooms to schedule all lectures

so that no two occur at the same time in the same room.

11

𝑎
𝑏

𝑐

ℎ

𝑑

𝑔
𝑒

𝑗
𝑖

𝑓

9 10 11 12 13 14 15 16 17

1

2

3

4

Rm #

10 lectures scheduled in 3 classroomsYES!

Greedy algorithm

§ Idea. Sort lectures in increasing order of start time: assign lecture
to any compatible classroom.

12

IntPartition({𝑠), 𝑓)}) // 𝑟 ← 0 # of allocated rooms
1. Sort by starting time so that 𝑠* ≤ 𝑠+ ≤ ⋯ ≤ 𝑠,
2. For 𝑗 = 1,… , 𝑛

If 𝑗 compatible with some classroom 𝑘
Schedule 𝑗 in room 𝑘

Else allocate new classroom 𝑟 + 1
Schedule 𝑗 in room 𝑟 + 1
𝑟 ← 𝑟 + 1

§Optimality. #Rm allocated = depth of input intervals

OBS. # rm needed ≥
depth of input intervals
(i.e., Max. number of
lectures that overlap)§ Running time. 𝑂 𝑛 log 𝑛

How to do it in 𝑂(log 𝑟)

Minimum spanning tree (MST)

§ Input. A connected undirected graph 𝐺 = 𝑉, 𝐸 .
• Weight function 𝑤:𝐸 → ℝ.
• For now, assume all edge weights are distinct.

13

§Output. A spanning tree 𝑇 of minimum weight.

𝑤 𝑇 ≔ K
-,/ ∈1

𝑤(𝑢, 𝑣)

A tree that connects all vertices

Applications
• Cluster, Real-time face verification.
• Network design (communication, electrical, computer, road).
• ….

Example of MST

14

7

6 12
5

714

3 10

8

15

9

7

6 12

5

714

3 10

8

15

9

Pop quiz 1

Which of the following are true for all spanning trees?

15

A. Contains exactly 𝑉 − 1 edges
B. The removal of any edge disconnects it
C. The addition of any edge creates a cycle
D. All of the above

16

Brainstorming
Greedy strategies for computing an MST?

Cayley’s theorem.
The complete graph on 𝑛 nodes has 𝑛,1+ spanning trees.

[Brute-force forbidden]

Greedy algorithms for MST

§ Kruskal’s. Start with 𝑇 = ∅. Insert edges in ascending
order of weights, unless it creates a cycle.

17

§ Reverse-Delete. Start with 𝑇 = 𝐸. Remove edges in
descending order of weights, unless it disconnects 𝑇.

§ Prim’s. Start with some node 𝑠. Grow a tree 𝑇 from
𝑠 outward. Add 𝑣 to 𝑇 such that 𝑤 𝑢, 𝑣 cheapest
and 𝑢 ∈ 𝑇.

Edge-driven

Node-driven
Sounds familiar? Dijkstra’s?

J In this extremely lucky case, all of them work! But correctness
proofs are non-trivial. We need the following tools to prove them.

Cycles and cuts

§Cycle: set of edges of form 𝑎, 𝑏 , 𝑏, 𝑐 , … , (𝑧, 𝑎).

18

§Cut: a subset of nodes 𝑆 ⊆ 𝑉.

§Cutset 𝐷(𝑆): subset of edges with exactly one endpoint in 𝑆.

1
2 3

7
8

5

46 Ex. Cut 𝑆 = {4,5,8}
Cutset 𝐷(𝑆) = { 4,3 , 5,7 , 5,6 , (7,8)}

Observation: cycle-cut intersection

Claim*. A cycle & a cutset intersect in an even number of edges.

19

§ Proof. A cycle has to leave & enter the cut the same number of
times.

𝑆 𝑉\S𝐶

𝑆

Cut Property

Cut property. Let 𝑆 be a subset of nodes. Let 𝑒 be the min weight
edge with exactly one endpoint in 𝑆. Then any MST 𝑇 contains 𝑒.

20

𝑒

𝑓§ Proof. (exchange argument)
• Suppose 𝑒 does not belong to 𝑇
• Adding 𝑒 to 𝑇 creates a cycle 𝐶
• Edge 𝑒 is both in 𝐶 and in the cutset 𝐷 𝑆
è there exists another edge, say 𝑓, that is in

both 𝐶 and 𝐷. [Claim*]
• 𝑇(≔ 𝑇 ∪ 𝑒 − {𝑓} is also a spanning tree
• 𝑤2 < 𝑤3 è 𝑤 𝑇(< 𝑤 𝑇 . Contradiction!

𝑆

Cycle property

21

𝑒

𝑓§ Proof. (exchange argument)
• Suppose 𝑓 belongs to 𝑇
• Deleting 𝑓 creates a cut 𝑆
• Edge 𝑓 is both in 𝐶 and in the cutset 𝐷 𝑆
è there exists another edge, say 𝑒, that is in both

𝐶 and 𝐷.
• 𝑇(≔ 𝑇 ∪ 𝑒 − {𝑓} is also a spanning tree
• 𝑤2 < 𝑤3 è 𝑤 𝑇(< 𝑤 𝑇 . Contradiction!

Cycle property. Let 𝐶 be a cycle, and let 𝑓 be the max weight edge
in 𝐶. Then any MST 𝑇 does not contain 𝑓.

