@ Portland State University

__

W21 CS 584/684 Lecture 11

 Dijkstra’s algorithm cont’d
* Interval scheduling
 Minimum spanning tree

Algorithm Design &
5 Analysis ’

__

--

__

Reflection on Dijkstra: greedy stays ahead

= Known region R: in which the shortest distance to s is known
= Growing R: adding v that has the shortest distance to s

* How to Identify v? The one that minimizes d(u) + I(u,v) for u € R
Shortest path to some u in known region,

e s ~ followed by a single edge (u, v)
—<= A

,/; _________________________ \ Dijk(G, s) // initialize d(s) = 0, d(u) = © , R=0
SO u i While R # V
! N, T ! Pick v € R w. smallest d(v) // by Priority Q
i Known- R Add v to R
\ Region L . For all edges (v,w) € E

RN ¢ If d(v) >d) + l(u,v)

"""" dw) <« dw) + l(u,v)

Contrast with Bellman-Ford

= Dijkstra (Greedy) O((m + n) logn)
d(v) = mind(w) + L(u, v)
* Positive weight: no need to wait; additional edges in a path do not help.
= Bellman-Ford (Dynamic programming) O (mn)

OPT(i,v) = min {OPT(i — 1,v), min (OPT(i — 1,w) + Ly}
VoW

“*Global vs. Local
* Dijkstra’s requires global information: known region & which to add
* Bellman-Ford uses only local knowledge of neighbors, suits distributed setting

Network routing: distance-vector protocol

» Communication network
* Nodes: routers
* Edges: direct communication links

: naturally nonnegative, but
* Cost of edge: delay on link. / 5

Bellman-Ford used anyway!

= Distance-vector protocol [“routing by rumor”]

* Each router maintains a vector of shortest-path lengths to every other node
(distances) and the first hop on each path (directions).

* Algorithm: each router performs separate computations for each potential
destination node.
= Path-vector protocol: coping with dynamic costs.
* Border Gateway Protocol (BGP).

https://tools.ietf.org/html/rfc4271

Correctness of Dijkstra’s algorithm

Invariant. For each node u € R, d(u) is
the length of a shortest s — u path

Proof. (By induction on size of R)
= Base case: |R| = 1 trivial

= Induction hypothesis: true for |R| = k >
= Show |R| = k + 1.
* Let v be the next node added to R and (u, v) be the chosen edge. Call
this s — u — v path P.
* Consider any s — v path . [Next show it’s no shorter than P]
* Let (x,y) be the first edge in Q leaving R;let Q' be the s — x segment.

* 1(Q) =2 1(Q") +I(x,y) = d(x) + L(x,y) = l(P); because Dijkstra’s
picked v in this iteration (node outside R with shortest distance to s)

Recall: weighted interval scheduling

= Input. n jobs; job j starts at s;, finishes at f;, weight w;
= Output. Subset of mutually compatible jobs of maximum weight

» DP algorithm O(nlogn)

Today
O(nlogn) Greedy algorithm for w; = 1.

Greedy strategies

Recall. DP recurrence. OPT(j) = value of optimal solution to jobs 1,2, ...,]
0 ifj=0

OPT(j) = max{OPT(j — 1),w; + OPT(pre(j))} otherwise

= Greedy: be lazy & pick the next compatible job that “looks nice”

* Earliest start time: ascending order of s;.

* Earliest finish time: ascending order of f;.

* Shortest interval: ascending order of f; — s;.

* Fewest conflicts: the one that conflicts the least number of jobs runs first.

= Exercise. Find counterexamples for each strategy (if possible)

Greedy: counterexamples

@ Earliest start time:

.
® Shortest interval:
]
® Fewest conflicts:
]

© Earliest finishing time

Greedy Algorithm: earliest finishing time

IntScheduling ({s;, f;})

1. Sort by finishing timesothat f; < f, << f,—— O(nlogn)

2. A < @ // set of selected jobs
3. Forj=1,..,n

If j compatible with A - nxX0(1)

A< AU{} |

—_

* Running time: O(nlogn)
= Correctness: proof by contradiction

* Suppose greedy is not optimal.

* Consider an optimal strategy: one that agrees with Greedy for as many initial jobs
as possible.

* Look at the first place that they differ: show a new optimal that agrees with
greedy

Greedy Algorithm: correctness

Proof (by contradiction): Suppose greedy is not optimal
* Let iy, iy, ..., I denote set of jobs selected by greedy.
* Let ji,J2, ..., Jm be set of jobs in the optimal solution OPT where i; = j;,i; =
J2, we, Iy = jp- for the largest possible value of r.

* Sub i, ;4 for j,,q in OPT: still feasible and optimal (OPT’); but agrees with Greedy
at 7 + 1 positions; contradicts the maximality of 7.

|
Greedy il i) | g
| |
OPT J1 J2 i Jrér N
|
OPT" i 2 b e

Interval Partitioning Problem

Scheduling classes
" Input. Lectures {sj, f;}

= OQutput. Minimum number of classrooms to schedule all lectures
so that no two occur at the same time in the same room.

Can you do better? |0 lectures scheduled in 4 classrooms
Rm# | 5 | i i ; ; ; E E

_ N W s

9:00 10 11 12:00 13 14 15 16 17:00

10

Interval Partitioning Problem

Scheduling classes
" Input. Lectures {sj, f;}

= OQutput. Minimum number of classrooms to schedule all lectures
so that no two occur at the same time in the same room.

YES! |0 lectures scheduled in 3 classrooms
Rm# i ; ; ; ; ; ; ; ; ; : ' ' a a

0 11 1z 13 12 15 6 17

_ N W s

>

o [

11

Greedy algorithm

= |dea. Sort lectures in increasing order of start time: assign lecture
to any compatible classroom.

IntPartition({s;, f;}) // r < 0 # of allocated rooms
1. Sort by starting time sothats; <s, <---<s,
& Forj=1,..,n
If j compatible with some classroom k } How to do it in O(logr)
Schedule j in room k
Else allocate 'n.ew classroom r + 1 OBS. # rm needed >
Schedule j inroom r + 1

el depth of input intervals

(i.e., Max. number of
* Running time. O(nlogn) lectures that overlap)

= Optimality. #Rm allocated = depth of input intervals 4

12

Minimum spanning tree (MST)

= Input. A connected undirected graph G = (V, E).
w:E - R.
* For now, assume all edge weights are

[A tree that connects all vertices

= Output. T of minimum weight.
w() =) wuv)
(u,v)€eT
Applications

* Cluster, Real-time face verification.
* Network design (communication, electrical, computer, road).

13

Example of MST

Pop quiz 1

Which of the following are true for all spanning trees?

A. Contains exactly |VV| — 1 edges
B. The removal of any edge disconnects it

C. The addition of any edge creates a cycle
D. All of the above

15

Cayley’s theorem.

The complete graph on n nodes has n™~2
[Brute-force forbidden]

spanning trees.

Brainstorming
Greedy strategies for computing an MST?

16

Greedy algorithms for MST

= Kruskal’s. Start with T = @. Insert edges in ascending

order of weights, unless it creates a cycle. .
_ Edge-driven

= Reverse-Delete. Start with T = E. Remove edges in
descending order of weights, unless it disconnects T.

* Prim’s. Start with some node s. Grow a tree T from
s outward. Add v to T such that w(u, v) cheapest

andu €T. Sounds familiar? Dijkstra’s?

Node-driven

© In this extremely lucky case, all of them work! But correctness
proofs are non-trivial. We need the following tools to prove them.

17

Cycles and cuts

= Cycle: set of edges of form (a, b), (b, ¢), ..., (2, a).
= Cut: a subset of nodes S € V.

= Cutset D(S): subset of edges with exactly one endpoint in S.

Ex. Cut S = {4,5,8}
Cutset D(S) = {(4,3),(5,7), (5,6),(7,8)}

18

Observation: cycle-cut intersection

Claim*. A cycle & a cutset intersect in an number of edges.

= Proof. A cycle has to leave & enter the cut the same number of
times.

19

Cut Property

Cut property. Let S be a subset of nodes. Let e be the min weight
edge with exactly one endpoint in S. Then any MST T contains e.

" Proof. (exchange argument) < / O
* Suppose e does not belong to T
* Adding e to T creates a cycle C
* Edge e is both in C and in the cutset D(S)

=>» there exists another edge, say f, that is in
both C and D. [Claim*] O

 T':=T U {e}— {f}is also a spanning tree
* we < wr = w(T') < w(T).Contradiction!

20

Cycle property

Cycle property. Let C be a cycle, and let f be the max weight edge
in C. Then any MST T does not contain f.

" Proof. (exchange argument) f O
* Suppose f belongs to T 5
* Deleting f creates a cut S
 Edge f is both in C and in the cutset D(S)

=>» there exists another edge, say e, that is in both
C and D.

« T':=T U{e}—{f}is also a spanning tree O
* we < wr = w(T') <w(T).Contradiction!

21

