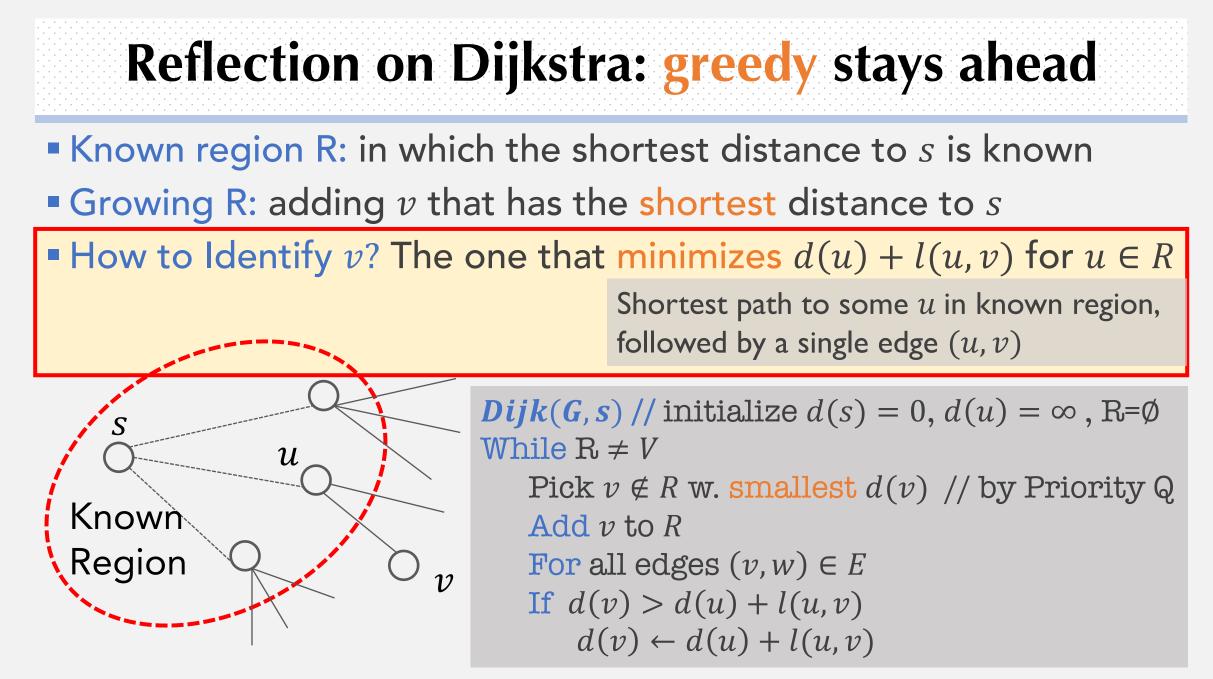


W'21 CS 584/684

Algorithm Design & Analysis

Fang Song

- Lecture 11
- Dijkstra's algorithm cont'd
- Interval scheduling
- Minimum spanning tree



• Dijkstra (Greedy) $O((m+n)\log n)$

$$\frac{d(v)}{u \in R} = \min_{u \in R} d(u) + l(u, v)$$

Contrast with Bellman-Ford

• Positive weight: no need to wait; additional edges in a path do not help.

Bellman-Ford (Dynamic programming) 0(mn)

$$OPT(i, v) = \min\left\{OPT(i-1, v), \min_{v \to w \in E} \{OPT(i-1, w) + l_{v \to w}\}\right\}$$

✤Global vs. Local

- Dijkstra's requires global information: known region & which to add
- Bellman-Ford uses only local knowledge of neighbors, suits distributed setting

Communication network

- Nodes: routers
- Edges: direct communication links
- Cost of edge: delay on link.

naturally nonnegative, but Bellman-Ford used anyway!

Distance-vector protocol ["routing by rumor"]

• Each router maintains a vector of shortest-path lengths to every other node (distances) and the first hop on each path (directions).

Network routing: distance-vector protocol

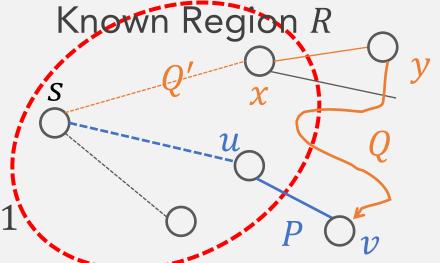
- Algorithm: each router performs separate computations for each potential destination node.
- Path-vector protocol: coping with dynamic costs.
 - Border Gateway Protocol (<u>BGP</u>).

Invariant. For each node $u \in R$, d(u) is the length of a shortest s - u path

- Proof. (By induction on size of R)
- Base case: |R| = 1 trivial
- Induction hypothesis: true for $|R| = k \ge 1$
- Show |R| = k + 1.
 - Let v be the next node added to R and (u, v) be the chosen edge. Call this s u v path P.

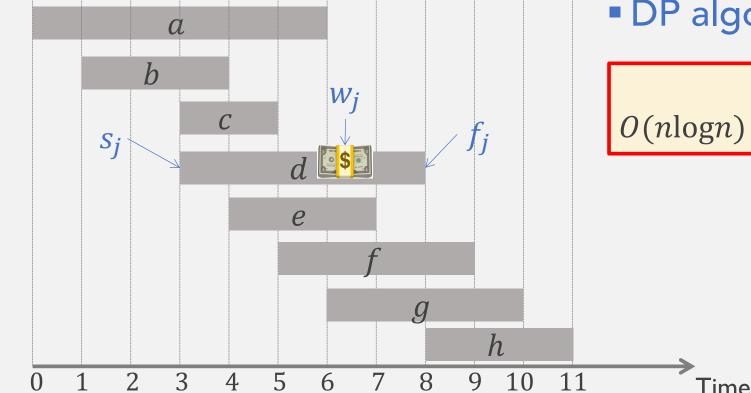
Correctness of Dijkstra's algorithm

- Consider any s v path Q. [Next show it's no shorter than P]
- Let (x, y) be the first edge in Q leaving R; let Q' be the s x segment.
- $l(Q) \ge l(Q') + l(x, y) \ge d(x) + l(x, y) \ge l(P)$; because Dijkstra's picked v in this iteration (node outside R with shortest distance to s)



Input. n jobs; job j starts at s_j, finishes at f_j, weight w_j Output. Subset of mutually compatible jobs of maximum weight

Recall: weighted interval scheduling



• DP algorithm $O(n \log n)$

Greedy strategies

Recall. DP recurrence. OPT(j) = value of optimal solution to jobs 1,2, ..., j

$$OPT(j) = \begin{cases} 0 & \text{if } j = 0\\ \max\{OPT(j-1), w_j + OPT(pre(j))\} \text{ otherwise} \end{cases}$$

Greedy: be lazy & pick the next compatible job that "looks nice"

- Earliest start time: ascending order of s_j .
- Earliest finish time: ascending order of f_i .
- Shortest interval: ascending order of $f_j s_j$.
- Fewest conflicts: the one that conflicts the least number of jobs runs first.

Exercise. Find counterexamples for each strategy (if possible)

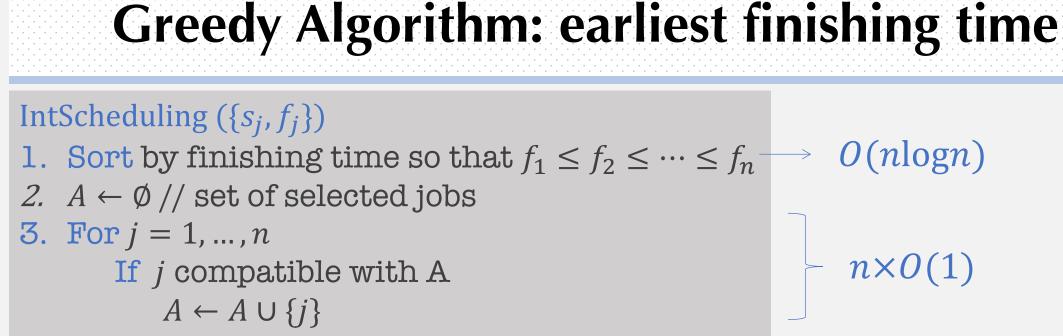


Greedy: counterexamples

⊗ Shortest interval:

[⊗] Fewest conflicts:

© Earliest finishing time



• Running time: $O(n \log n)$

Correctness: proof by contradiction

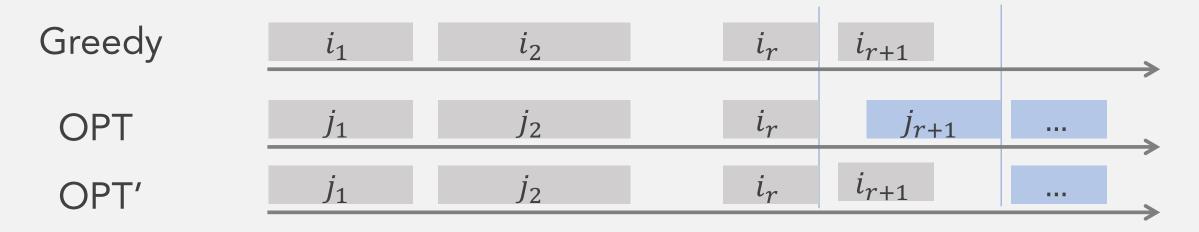
- Suppose greedy is not optimal.
- Consider an optimal strategy: one that agrees with Greedy for as many initial jobs as possible.
- Look at the first place that they differ: show a new optimal that agrees with greedy more.

Proof (by contradiction): Suppose greedy is not optimal

- Let i_1, i_2, \dots, i_k denote set of jobs selected by greedy.
- Let $j_1, j_2, ..., j_m$ be set of jobs in the optimal solution OPT where $i_1 = j_1, i_2 = j_2, ..., i_r = j_r$ for the largest possible value of r.

Greedy Algorithm: correctness

• Sub i_{r+1} for j_{r+1} in OPT: still feasible and optimal (OPT'); but agrees with Greedy at r + 1 positions; contradicts the maximality of r.

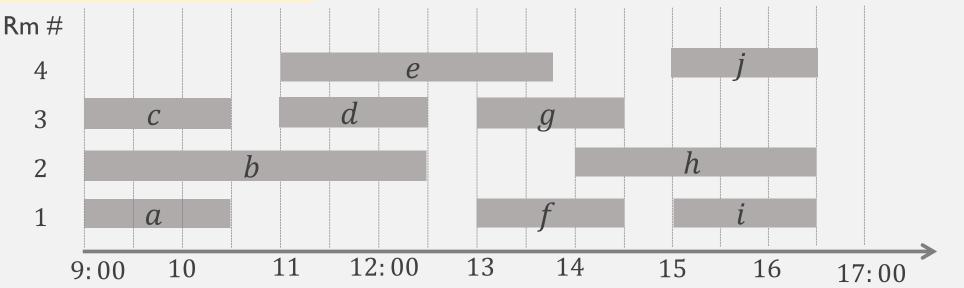


Scheduling classes

- Input. Lectures $\{s_j, f_j\}$
- Output. Minimum number of classrooms to schedule all lectures so that no two occur at the same time in the same room.

Interval Partitioning Problem

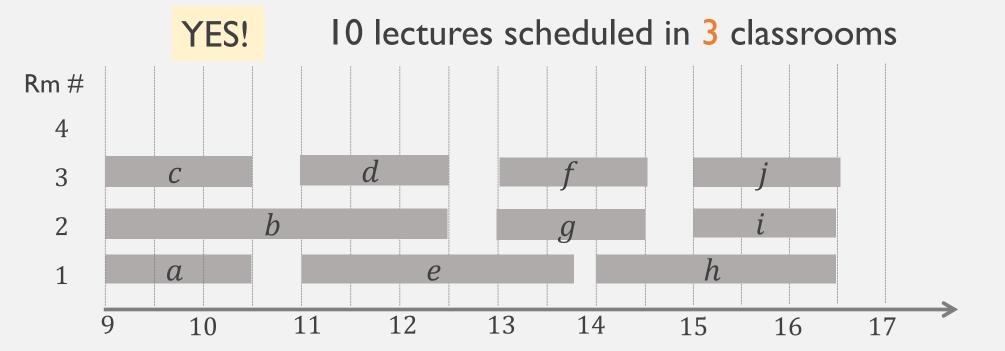
Can you do better? 10 lectures scheduled in 4 classrooms



Scheduling classes

- Input. Lectures $\{s_j, f_j\}$
- Output. Minimum number of classrooms to schedule all lectures so that no two occur at the same time in the same room.

Interval Partitioning Problem



Idea. Sort lectures in increasing order of start time: assign lecture to any compatible classroom.

Greedy algorithm

IntPartition($\{s_j, f_j\}$) // $r \leftarrow 0$ # of allocated rooms 1. Sort by starting time so that $s_1 \leq s_2 \leq \cdots \leq s_n$ 2. For j = 1, ..., nIf j compatible with some classroom kSchedule j in room kElse allocate new classroom r + 1Schedule j in room r + 1 $r \leftarrow r + 1$ OBS. # rm needed \geq depth of input intervals

(i.e., Max. number of lectures that overlap)

Running time. O(n log n)

Optimality. #Rm allocated = depth of input intervals

• Input. A connected undirected graph G = (V, E).

- Weight function $w: E \to \mathbb{R}$.
- For now, assume all edge weights are distinct.

A tree that connects all vertices

Minimum spanning tree (MST)

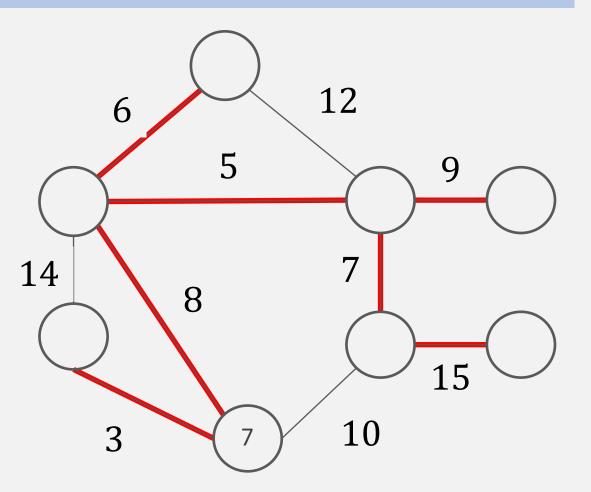
• Output. A spanning tree *T* of minimum weight.

$$w(T) \coloneqq \sum_{(u,v)\in T} w(u,v)$$

Applications

- Cluster, Real-time face verification.
- Network design (communication, electrical, computer, road).

•



Example of MST

Which of the following are true for all spanning trees?

Pop quiz 1

- A. Contains exactly |V| 1 edges
- B. The removal of any edge disconnects it
- C. The addition of any edge creates a cycle
- D. All of the above

Cayley's theorem.

The complete graph on n nodes has n^{n-2} spanning trees. [Brute-force forbidden]

Brainstorming Greedy strategies for computing an MST?

- Kruskal's. Start with T = Ø. Insert edges in ascending order of weights, unless it creates a cycle.
- Reverse-Delete. Start with T = E. Remove edges in descending order of weights, unless it disconnects T.

Prim's. Start with some node s. Grow a tree T from s outward. Add v to T such that w(u, v) cheapest and $u \in T$. Sounds familiar? Dijkstra's?

Greedy algorithms for MST

In this extremely lucky case, all of them work! But correctness proofs are non-trivial. We need the following tools to prove them.

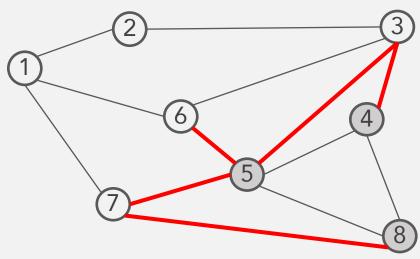
Edge-driven

• Cycle: set of edges of form $(a, b), (b, c), \dots, (z, a)$.

• Cut: a subset of nodes $S \subseteq V$.

• Cutset D(S): subset of edges with exactly one endpoint in S.

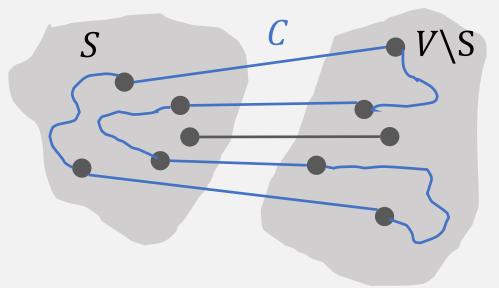
Cycles and cuts



Ex. Cut $S = \{4,5,8\}$ Cutset $D(S) = \{(4,3), (5,7), (5,6), (7,8)\}$

Observation: cycle-cut intersection

Claim*. A cycle & a cutset intersect in an even number of edges.

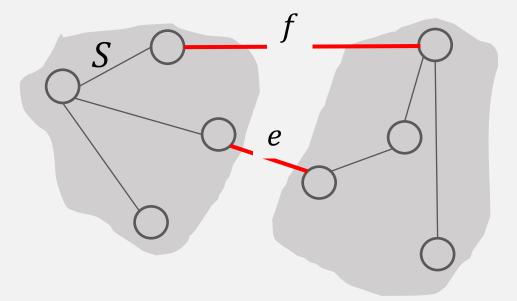


Proof. A cycle has to leave & enter the cut the same number of times.

Cut property. Let S be a subset of nodes. Let e be the min weight edge with exactly one endpoint in S. Then any MST T contains e.

Cut Property

- Proof. (exchange argument)
 - Suppose e does not belong to T
 - Adding e to T creates a cycle C
 - Edge e is both in C and in the cutset D(S)
 - → there exists another edge, say f, that is in both C and D. [Claim*]
 - $T' \coloneqq T \cup \{e\} \{f\}$ is also a spanning tree
 - $w_e < w_f \rightarrow w(T') < w(T)$. Contradiction!



Cycle property. Let C be a cycle, and let f be the max weight edge in C. Then any MST T does not contain f.

Cycle property

Proof. (exchange argument)

- Suppose f belongs to T
- Deleting f creates a cut S
- Edge f is both in C and in the cutset D(S)
- \rightarrow there exists another edge, say *e*, that is in both *C* and *D*.
- $T' \coloneqq T \cup \{e\} \{f\}$ is also a spanning tree
- $w_e < w_f \rightarrow w(T') < w(T)$. Contradiction!

