CS 584/684 Algorithm Design and Analysis

Homework 7

Portland State U, Winter 2021 03/02/21
Lecturer: Fang Song Due: 03/11/21

Instructions. This problem set contains 8 pages (including this cover page) and 4
questions. A random subset of problems will be graded.

Your solutions will be graded on correctness and clarity. You should only submit
work that you believe to be correct, and you will get significantly more partial credit
if you clearly identify the gap(s) in your solution. It is good practice to start any
long solution with an informal (but accurate) summary that describes the main idea.
You may opt for the “I take 15%"” option.

You need to submit a PDF file before the deadline. Either a clear scan of you
handwriting or a typeset document is accepted. You will get 5 bonus points for
typing in LaTeX (Download and use the accompany TeX file).

You may collaborate with others on this problem set. However, you must write up
your own solutions and list your collaborators and any external sources for each
problem. Be ready to explain your solutions orally to a course staff if asked.

For problems that require you to provide an algorithm, you must give a precise
description of the algorithm, together with a proof of correctness and an analysis of
its running time. You may use algorithms from class as subroutines. You may also
use any facts that we proved in class or from the book.

If you describe a Greedy algorithm, you will get no credit without a formal proof
of correctness, even if your algorithm is correct.

A proof of NP-completeness should include two parts: 1) the problem is in NP; and
2) the problem is NP-hard.

Exercises. Do not turn in.

1. A clique in an undirected graph G = (V,E) is a subset V' C V of vertices, each pair
of which is connected by an edge in E. (In other words, a clique is a complete subgraph
of G. The size of a clique is the number of vertices it contains. The Clique problems
asks to decide whether a clique of a given size k exists in the graph. Show that Clique
is NP-complete.



Problems to turn in.

1. (Demand) Suppose instead of capacities, we consider networks where each edge
u — v has a non-negative demand d(u — v). Now an (s, t)-flow f is feasible if and
only if f(u — v) > d(u — v) for every edge u — v. (Feasible flow values can now be
arbitrarily large.) A natural problem in this setting is to find a feasible (s, t)-flow of
minimum value.

(a) (10 points) Describe an efficient algorithm to compute a feasible (s, t)-flow, given
the graph, the demand function, and vertices s and ¢ as input. (Hint: find a flow
that is non-zero everywhere, and then scale it up to make it feasible.)

(b) (10 points) Suppose you have access to a subroutine MaxFlow that computes
maximum flows in networks with edge capacities. Describe an efficient algorithm
to compute a minimum flow in a given network with edge demands; your
algorithm should call MaxFlow exactly once.

(c) (10 points) State and prove an analogue of the max-flow min-cut theorem for
this setting. (Do minimum flows correspond to maximum cuts?)



2. (Integer linear programming) An integer linear-programming problem is a linear-
programming problem with the additional constraint that the variables x must take
on integral values. Specifically, given an integer m x n matrix A, an integer vector b of
dimension m and integer vector ¢ of dimension 1, we want to maximize ¢! - x under

the constraints Ax < b and x > 0.
(a) (7 points) Show that weak duality (CLRS Lemma 29.8) holds for an integer linear
program.
(b) (8 points) Show that strong duality (CLRS Theorem 29.10) does not always hold
for an integer linear program.



(c) (10 points (bonus)) Given a primal linear program in standard form, let us define
P to be the optimal objective value for the primal linear program, D to be the
optimal objective value for its dual, IP to be the optimal objective value for the
integer version of the primal (that is, the primal with the added constraint that
the variables take on integer values), and ID to be the optimal objective value for
the integer version of the dual. Assuming that both the primal integer program
and the dual integer program are feasible and bounded, show that

IP<P=DXID.



(d) (10 points) Consider further 0-1 integer programming, where one needs to decide if
there exists an integer vector x of dimension n with elements in the set {0,1}such
that Ax < b. Prove that 0-1 integer programming is NP-complete.



3. (Randomized and approximate algorithms)

(a) (10 points) (Hat-check) Each of n customers gives a hat to a hat-check person
at a restaurant. The hat-check person gives the hats back to the customers in a
uniformly random order. What is the expected number of customers who get
back their own hat?



(b) (10 points) (3-Coloring) Suppose you are given a graph G = (V, E), and we want
to color each node with one of three colors, even if we aren’t necessarily able to
give different colors to every pair of adjacent nodes. We say an edge (u,v) is
satisfied if the colors assigned to u and v are different.

Consider a coloring scheme that maximizes the number of satisfied edges, and
let c* denote this number. Give a poly-time algorithm that produces a coloring
that satisfies at least %c* edges. If you want to use an randomized algorithm, the

expected number of edges it satisfies should be at least Zc*.



(c) (10 points) You have received a present containing n pieces of candy with
weights W([1,...,n] (in ounces). You want to load the candy into as many
boxes as possible, so that each box contains at least L ounces of candy. Describe
an efficient 2-approximation algorithm for this problem. (Hint: First consider the
case where every piece of candy weighs less than L ounces.)



