
CS 584/684 Algorithm Design and Analysis

Homework 2
Portland State U, Winter 2021 01/12/21
Lecturer: Fang Song Due: 01/19/21

Instructions. This problem set contains 5 pages (including this cover page) and 4
questions. A random subset of problems will be graded.

• Your solutions will be graded on correctness and clarity. You should only submit
work that you believe to be correct, and you will get significantly more partial credit
if you clearly identify the gap(s) in your solution. It is good practice to start any
long solution with an informal (but accurate) summary that describes the main idea.
You may opt for the “I take 15%” option.

• You need to submit a PDF file before the deadline. Either a clear scan of you
handwriting or a typeset document is accepted. You will get 5 bonus points for
typing in LaTeX (Download and use the accompany TeX file).

• You may collaborate with others on this problem set. However, you must write up
your own solutions and list your collaborators and any external sources for each
problem. Be ready to explain your solutions orally to a course staff if asked.

• For problems that require you to provide an algorithm, you must give a precise
description of the algorithm, together with a proof of correctness and an analysis of
its running time. You may use algorithms from class as subroutines. You may also
use any facts that we proved in class or from the book.

1



1. (Recurrence) Solve the following recurrences.

(a) (5 points) A(n) = 2A(n/4) +
√

n

(b) (5 points) B(n) = 2B(n/4) + n

(c) (5 points) C(n) = 3C(n/3) + n2

(d) (5 points (bonus)) D(n) =
√

nD(
√

n) + n

2



2. (Quicksort) We were not precise about the running time of Quicksort in class (for a
good reason). We will give some case studies in this problem (and appreciate the
subtlety).

(a) (10 points) Given an input array of n elements, suppose we are unlucky and the
partitioning routine produces one subproblem with n− 1 elements and one with
0 element. Write down the recurrence and solve it. Describe an input array that
costs this amount of running time to get sorted by Quicksort.

(b) (5 points) Now suppose that the partitioning always produces a 9-to-1 propor-
tional split. Write down the recurrence for T(n) and solve it.

(c) (5 points) What is the running time of Quicksort when all elements of the input
array have the same value?

3



3. (Akinator’s trick) Play the game Akinator online (https://en.akinator.com/), and
answer the questions below.

(a) (10 points) Given a sorted array A with distinct numbers, we want to find out an
i such that A[i] = i if exists. Give an O(log n) algorithm.

(b) (10 points) Consider a sorted array with distinct numbers. It is then rotated k
(k is unknown) positions to the right, and call the resulting array A. (Example:
(8,9,2,3,5,7) is the sorted array (2,3,5,7,8,9) rotated to the right by 2 positions)
Design as efficient an algorithm as you can to find out if A contains a number x.
Exercise (do not turn in). Can you think of some real-world problems that the
techniques in your algorithms could be useful?

4

https://en.akinator.com/


4. (Counting inversions) Given a sequence of n distinct numbers a1, . . . , an, we call (ai, aj)
an inversion if i < j but ai > aj. For instance, the sequence (2, 4, 1, 3, 5) contains three
inversions (2, 1), (4, 1) and (4, 3).

(a) (15 points) Given an algorithm running in time O(n log n) that counts the num-
ber of inversions. (Hint: does Merge-sort help?) Can you also output all
inversions?

(b) (10 points (bonus)) Let’s call a pair a significant inversion if i < j and ai > 2aj.
Given an O(n log n) algorithm to count the number of significant inversions.

5


