
CS 510/610 Topics on probabilistic graphical models

Homework 2
Portland State U, Winter 2021 02/09/21
Lecturer: Fang Song Due: 02/25/21

Instructions. This problem set contains 12 pages (including this cover page) and 4
questions. A random subset of problems will be graded.

• Your solutions will be graded on correctness and clarity. You should only submit
work that you believe to be correct, and you will get significantly more partial credit
if you clearly identify the gap(s) in your solution. It is good practice to start any
long solution with an informal (but accurate) summary that describes the main idea.
You may opt for the “I take 15%” option.

• You need to submit a PDF file before the deadline. Either a clear scan of you
handwriting or a typeset document is accepted. You will get 5 bonus points for
typing in LaTeX (Download and use the accompany TeX file).

• You may collaborate with others on this problem set. However, you must write up
your own solutions and list your collaborators and any external sources for each
problem. Be ready to explain your solutions orally to a course staff if asked.

1



1. (Normalized importance sampling) A common situation in real-world applications
is that we only know a probability up to a normalizing constant Z. Namely, we can
only compute an unnormalized distribution p̃(X) of p(X) such that p̃(X) = Zp(X).
In this case, if we run importance sampling with a proposal distribution q, we can
only compute the weight function with respect to p̃:

w(X) =
p̃(X)

q(X)
.

(a) (5 points) Show that Eq[w(X)] = Z.
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(b) (5 points) Let f be an arbitrary function on Val(X). Show that

Ep( f (X)) =
Eq[ f (X)w(X)]

Eq[w(x)]
.

(N.B. As a result, we can form an empirical estimation ÎT( f ) by that of both

the numerator and denominator, i.e., ÎT( f ) := ∑T
t=1 f (xt)w(xt)

∑T
t=1 w(xt)

≈ Ep[ f (X)], where

x1, . . . , xT are i.i.d samples from q.)
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(c) (5 points) Show that Ep[
p̃(X)
q(X)

] ≥ 1 and the equality holds iff. p = q.
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(d) (10 points (bonus)) Now consider X = (X1, . . . , XD), and assume that both p
and q can be factorized, i.e., p(x) = ΠD

i=1pi(xi), and q(x) = ΠD
i=1qi(xi). Denote

wi := w(xi) = p̃(xi)
q(xi)

(note that each sample xi = (xi
1, . . . , xi

D) is D-dimensional).

A measure of the variability of two components in vector w = (w1, . . . , wT) is
given by Eq[(wi − wj)2]. Show that Eq[(wi − wj)2] has exponential growth with
respect to D.
(N.B. This tells us that the standard importance sampling would blow up in
high-dimensional cases.)
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2. (15 points (bonus)) Consider the following heuristics of picking the elimination or-
der in the variable elimination algorithm (or the corresponding graph elimination
procedure).

• Min-neighbors. At each point, choose a vertex that has the minimum number of
neighbors in the current graph.

• Min-Weight. Choose a vertex of the minimum product of the domain cardinality
of its neighbors.

• Min-Fill. Choose a vertex that causes the minimum number of edges to be added
due to its elimination.

Show that none of them dominate the others; that is, for any pair of strategies there is
always a graph where the ordering produced by one is better than that produced by
the other. As our measure of performance, use the computational cost of full variable
elimination, i.e., computing the partition function.
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3. (Markov Chains) Consider the following two conditions on a Markov chain T:

I. It is possible to get from any state to any state using a positive probability path
in the state graph.

II. For each state x, there is a positive probability of transitioning directly from x to
x (a self-loop).

Answer the following.

(a) (5 points) Show that, for a finite-state Markov chain, these two conditions to-
gether imply that T is regular.

(b) (5 points) Show that regularity of the Markov chain implies condition I.

(c) (5 points) Show an example of a regular Markov chain that does not satisfy the
condition II.
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4. (MCMC)

(a) (10 points) Show that any distribution π that satisfies the detailed balance equa-
tion below must be a stationary distribution of T.

∀x, x′ ∈ Val(X), π(x)T(x → x′) = π(x′)T(x′ → x) .
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(b) (10 points) Consider the Markov chain T induced by the Metropolis-Hasting
algorithm:

T(x → x′) := min
{

1,
π(x′)q(x′ → x)
π(x)q(x → x′)

}
,

where q is a proposal distribution (in class we denoted q(x′ → x) by the con-
ditional probability q(x|x′)). Verify that π and T satisfy the detailed balance
equation. Conclude that π is the stationary distribution of A (assuming that A is
regular).
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(c) (10 points) Consider a simple Bayesian network p with two ternary variables
(Val(A) = Val(B) = {0, 1, 2}). Let the CPDs (conditional probability distribu-
tions) be as follows.

A p(A)
0 0.1
1 0.3
2 0.6

A p(B = 0|A) p(B = 1|A) p(B = 2|A)
0 0.2 0.3 0.5
1 0.3 0.3 0.4
2 0.1 0.5 0.4

Suppose that we want to run Gibbs sampling to sample from p, construct the
corresponding Markov chain by describing the graph of the state space and the
transition probabilities.

A B

Figure 1: Simple Bayesian network
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(d) (Exercise. Do not turn in.) Show that Gibbs sampling is a special case of the
Metropolis-Hastings algorithm. Namely, provide a particular proposal distribu-
tion Qi for each local transition TQi that induces precisely the same distribution
over the transitions taken as the associated Gibbs transition distribution Ti.
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(e) (15 points) Consider an unnormalized distribution p̃(X) which is hard to sample
from, and a proposal distribution q from which we can draw independent
samples. Consider a Markov chain where we define

T(x → x′) = q(x′)min
[

1,
w(x′)
w(x)

]
,

for x′ 6= x, where w(x) := p̃(x)
q(x) . And we further define T(x → x) := 1 −

∑x 6=x′ T(x → x′). Intuitively, the transition from x to x′ selects an independent
sample x′ from q, and then moves toward it, depending on whether its importance
weight is better than that of our current point x. Show that T defines a legal
Markov chain and p (p̃ normalized) is its stationary distribution.
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