
1

Winter 2018 CS 485/585 Introduction to Cryptography

Lecture 8
Portland State University Feb. 1, 2018
Lecturer: Fang Song

Draft note. Version: February 4, 2018. Email
fang.song@pdx.edu for comments and corrections.

Agenda
• (Last time) PRF-MAC, Domain-extension: Cascade

• Hash functions, collision resistance, generic security

•

Hash functions

Today we introduce another basic primitive in cryptography – hash
functions. Roughly they are functions that compress long inputs to
short digests. The primary requirement is to avoid collision1. 1 a collision is a pair of inputs (x1, x2)

such that h(x1) = h(x2).In data structures you’ve heard about building a hash table that
enables quick look up for an element. A “good” hash table introduces
as few collisions as possible.

The basic idea is similar in the cryptographic setting, but with
significantly more stringent criteria. Therefore we call cryptographic
hash functions to stress this. 2 2 As for PRG, ordinary hash tables

should not be used for cryptographic
purposes.• Collision resistant is a must rather than a feature “nice-to-have”.

• It is fair to assume that the data elements in the context of data
structures are not chosen to cause collision intentionally. But in the
crypto-setting, attackers are making every effort to create collisions.

Defining collision-resistance
For technical reason (i.e., non-uniform
adversaries), the textbook considers
keyed hash functions H : K × X → Y:
Hs(x) := H(s, x). Here the key is
not meant to be kept secret, so it
is written in superscript. A non-
uniform adversary can hardwire a
collision (x, x′) for h : {0, 1}∗ →
{0, 1}n and break collision resistance
trivially. Therefore the key, or rather
a system parameter as Boneh-Shoup
call it, s is introduced, to resolve
this technicality since no efficient
adversary can hardwire a collision for
every possible s.

Definition 1. A hash function is an efficient (deterministic poly-time)
algorithm H : {0, 1}∗ → {0, 1}ℓ(n). If H is defined only for inputs
x ∈ {0, 1}ℓ′(n) with ℓ′(n) > ℓ(n), then we call H a compression function.

Collision-resistance will be our security goal, and we give a formal
definition by the following collision-finding game.

Definition 2. H is collision resistant if for any PPT A

Pr[H-collA,H(n) = 1] ≤ negl(n) .



2

1. Adversary A is given 1n and output (x, x′).

2. A succeeds if x ̸= x′ and H(x) = H(x′). Define the output of
the game H-collA,H(n) = 1 in this case, and H-collA,H(n) = 0

otherwise.

Figure 1: Collision-finding experiment
H-collA,H(n)

Generic attacks on hash functions

Let H : {0, 1}∗ → {0, 1}ℓ be a hash function. How hard is it to find
collisions in H? We consider generic attacks, which do not rely on the
specific structure of a hash function and hence apply to arbitrary hash
functions. This gives guideline for the minimum security one should
aim for.

Direct attack: evaluate 2ℓ + 1 distinct inputs, and there must be a
collision3. How about evaluating q elements? what is probability that 3 Pigeonhole Principle
there is a collision? We analyze it for a random function, and this
leads us to the famous birthday problem.

The birthday problem

Choose q elements y1, . . . , yq from a set of size N uniformly at ran-
dom with replacement, what is the probability that there exist i ̸=
j with yi = yj?

Let coll denote this event, and Colli,j denote the event that (yi, yj)

form a collision.

Lemma 3. Pr[Coll] = Θ(q2/N). Specifically

Pr[Coll] ≤ q2/2N, and Pr[Coll] ≥ q(q − 1)

4N
for q ≤

√
2N .

The upper bound ensures that when q is small, it is very unlikely
to see a collision4. The lower bound, on the other hand, promises that 4 This is the reason that a PRP is

also a PRF when the codomain is big
enough.

when q = Ω(
√
N), collisions will most likely occur (with constant

probability).
Why call this the birthday problem? Assume each person’s birth-

day (month & day) are uniform in 365 days of a year. How are there
two people having the same birthday in a group of people? I claim if
there are at least 23 people, then this will happen with probability at
least 1/2.



3

Proof. Note that for each distinct pair i ̸= j, Pr[Colli,j ] = 1/N .

Pr[Coll] = Pr[∪i̸=jColli,j ]

≤
∑

i ̸= j Pr[Colli,j ] union bound

=

(
q

2

)
· 1

N
≤ q2/2N .

Back to our discussion on finding collision in a random function,
if we evaluate q distinct inputs, this amounts to sampling q times
independently from the codomain {0, 1}ℓ. Therefore when q = Θ(

√
2ℓ),

we will have at least 1/2 chance of finding a collision. To give you a
concrete sense: to find a collision in a hash function of output length
256 bits, basically you only need to invest 2128 unit of computation
resource. You might have heard statements that a system offers 128-
bit of security. This means that breaking the system is roughly as
difficult as exhaustively searching a 2128-bit key space. 5 5 Read [KL: 5.4.2] about how to reduce

the memory cost of the birthday
attack as well as finding meaningful
collisions rather than an arbitrary
one.

There are other properties we need from a cryptographic hash
function: Preimage resistant, second-preimage resistant, etc. Read the
book and do the HW problems.

Constructing hash functions

We first show how to extend the domain of a function on a small
domain (a compression function) to handle long messages. We then
discuss a dominant approach in practice to construct compression
functions from block ciphers.

Domain extension: Merkle-Damgård Transformation

Let h be a fixed-length hash function: h : {0, 1}2n → {0, 1}n (e.g.,
think of n as 128 bits). Construct H to handle variable-length inputs. Discussion in Class.

• H(x) := h(x1∥x2)∥h(x3∥h4)∥ · · · .
Ignore the issue of variable-length
output, is H collision resistant
(assuming h is)?

• Picking a random IV? Hash func-
tion needs to be deterministic: the
same message better produces the
same digest no matter who and
when hashes it. In SHA family,
some peculiar IV rather than 0n is
used.

• Without encoding message length
in last block? Explicit attack
is possible depending on the
compression function. Including
the length makes the proof simple
and universal. Read more at
https://eprint.iacr.org/2009/
325.

pad(x) = x1 x2 x3 x4 = ⟨L⟩

hz0 = IV h
z1

h
z2

h
z3

H(x)

On input string x of length L

1. (Padding) Set B := ⌈L/n⌉ i.e. number of blocks in x. Pad the
last block with 0 to make it a full block. Denote the padded input
x1, . . . , xB , and let xB+1 := ⟨L⟩, i.e. the length represented as an
n-bit string.

2. (IV) Set z0 := IV = 0n.

https://eprint.iacr.org/2009/325
https://eprint.iacr.org/2009/325


4

3. (Cascading) For i = 1, . . . , B + 1, compute zi = h(zi−1∥xi).

4. Output zB+1.

Theorem 4 ([KL: Thm. 5.4]). If h is collision resistant, so is H.

Proof skipped. Idea: use a collision in H to find one in h.

Compression functions from block ciphers: Davies-Meyer construc-
tion

How do we get compression functions on a small domain? Block ci-
phers are the hero again. [KL: Section 6.3]

Let F be a block cipher (PRP): {0, 1}n × {0, 1}ℓ → {0, 1}ℓ. Davies-
Meyer proposed the following design.

h :{0, 1}n+ℓ → {0, 1}ℓ

k∥x 7→ Fk(x)⊕ x .

Fk h(x, k)

x

Unfortunately, we don’t know how to prove collision resistance of
the Davies-Meyer compression function solely based on the assumption
that F is a PRP. Instead, we resolve to an idealized model, ideal ci-
pher model, which assumes that a random permutation and its inverse
are publicly available as oracles to all users. We do not get into it in
this course.

Examples

Name year digest (bits) block (bits) best attack
MD4 1990 128 512 21

MD5 1992 128 512 230

SHA-0 1993 160 512 239 (2005)
SHA-1 1995 160 512 263 (2017)

SHA-2 (SHA-256) 2002 256 512
SHA-2 (SHA-512) 2002 512 512

Table 1: Mekle-Damgård hash func-
tions

What to specify in a Merkle-Damgård
hash function, e.g., SHA-256? Merkle-
Damgård: IV and h : {0, 1}512 →
{0, 1}256. Then h is a Davies-Meyer
compression function, and hence we
need to describe the underlying block
cipher.
Full attack on SHA-1
https://shattered.io/

The new standard SHA-3, the Keccak family, is based on a very
cute new design. Read more on http://keccak.noekeon.org/.

Application: Hash-and-MAC

A general paradigm: S′(m) = S(H(m)).

Theorem 5 (KL-Thm. 5.6). If Π is a secure MAC, and H is a colli-
sion resistant hash function (for arb. length input), then Π′ is a secure
MAC for arb. length messages.

http://keccak.noekeon.org/


5

This paradigm should not be used literally for two reasons.

1. In practice, hash functions have fixed small output length. Once
one finds a collision offline, breaking any MAC scheme of this kind
is trivial.

2. It relies on two primitives, a collision resistant hash and a secure
MAC. It is preferable, from the implementation point of view, to
rely on one primitive only.

It inspires the popular HMAC widely used on the Internet (Next
Time).


	Hash functions
	Constructing hash functions
	Application: Hash-and-MAC

