Winter 2018 CS 485/585 Introduction to Cryptography
LECTURE 12

Portland State University
Lecturer: Fang Song

Feb. 15, 2018

DRAFT NOTE. VERSION: February 19, 2018. Email
fang.song@pdx.edu for comments and corrections.

Agenda

o (Last time) Computational indist., Public key revolution;
e Review of number theory
e Trapdoor one-way permutations

e Factoring and RSA

Trapdoor one-way permutations

Recall Diffie-Hellman envisioned public-key encryption and digital
signature via a imaginary “magic” function. This is formalized as a
trapdoor one-way permutation in modern terminology.

Definition 1. A trapdoor one-way permutation (TDP) is a triple of

poly-time algorithms

o G: (pk,sk) «+ G(1™). pk is called a public key and sk is called a
secret key (or trapdoor sometimes denoted as td).

o Fpp: deterministic algorithm y = Fp(x) and F,i(-) is a permuta-
tion on domain X.

o Fy: deterministic inversion algorithm x = Fyy(y).

and it satisfies the correctness and one-wayness conditions:

o Correctness: Fgi(Fpr(z)) = « for all z € X except with negligible
probability (over choice of (pk, sk)).

o One-way (without knowing sk): Fj is one-way, namely for any
PPT A, it holds that

Pr(z’ = : (pk,sk) + G(1"),z + X,y = Fp(z), 2’ + A(pk,y)] < negl(n).
How do we construct such a TDP? Diffie-Hellman didn’t know one

in their 1976 paper, and had to wait another year till RSA found one.
So far we are most successful with number-theoretic problems.

Number theory 101 in 30 mins

Diwisibility and prime numbers

o Integers Z = {...,—3,—-2,—-1,0,1,2,3,...}. ||a]| denotes its length
(i.e., number of digits) in binary representation.

o Natural numbers N={0,1,2,...}.
e k divides N, k|n, if n is a multiple of k.

e Prime number p > 2: only divisors are 1 and p. Otherwise, call it a
composite number. 1

How do we measure complexity of integer arithmetic? We count
the number of basic operations as a function of the length ||la|| (say in
binary representation)?.

Modular arithmetic

Let a, N be integers (N > 2). By the division procedure, we can write

a=qN +r,

we call ¢ the quotient, and r the remainder?
For integers a, b, n, we write

a=bmod N,

if @ and b have them same remainder when divided by N. N is called
the Modulus.

Let Zy ={0,1,...,N — 1}. We define two operations mod addition
+ mod N and mod-multiplication - mod N. For addition +, every
a € Zy has an unique (additive) inverse in b € Zy such that a + b =
0 mod N.

But if we care about multiplication -, it is not always possible to
find @’ such that aa’ = 1 mod N*. To characterize which elements in
Zyn, we need the notion of the greatest common divisor and co-prime
numbers.

Greatest common divisor ged(a, b): the largest integer that is a
divisor of both @ and b°. Euclid’s algorithm can compute ged(a, b) effi-
ciently (i.e., poly in ||a|| and ||b]|). We say a,b co-prime (aka relatively
prime) if ged(a,b) = 1.

Theorem 2. a € Zy has an inverse, i.e., ' € Zy such that aa’ =
1 mod N, iff. ged(a,N)=1.

Let Z% :={a € Zy : gcd(a, N) = 1} be the set of numbers co-prime
to N®. Euler’s function ¢p(N) := |Z%|.

! There are infinitely many prime
numbers; and they behave much like
random numbers (of course there

is no randomness). Testing prime

is efficient by both randomized and
deterministic algorithms.

2 For example, adding two n-bit
numbers takes linear time; multiplying
them takes O(n?) by high-school
algorithm.

3Ex. a=15,N=T7and 15=2-7+ 1.

4 Consider Zg. 2+ 4 =0 mod 6. But
2.1=2 mod6,2-2 = 4mod 6,
2-3=0mod6,2- -4 =2mod 6,
2.5 =4 mod 6.

5 Ex. ged(10,14) = 2.

SEx. Z; = {1,5}

Modular Exponentiation. We will work with exponentiation modulo a
large Modulus N:

a’mod N=a-a...amod N,
b times

for a € Zn and b > 0 a positive integer. Repeated squaring algorithm
computes a’ mod N in polynomial time.

Theorem 3 (Euler’s theorem). If N > 2 and a € ZY;, then a®™ =
1 mod n.

PKC based on factoring

The factoring problem and assumption

Now we introduce the famous problems and assumptions related to
integer factorization.

Define FMULT (p q) = p - q, where p, ¢ are n-bit prime numbers.
The problem of factorization is to invert FMULT (on random p and q).
The study of factoring has a long history and yet the best factoring
algorithm known still requires running time ~ exp(nl/ 31ogn?/ 3) based
on general number field sieve.

The Factoring assumption

FMULT 5 a one-way function.

FMULT i not immediately useful for public-key crypto. We intro-

duce a related problem.

The RSA problem and assumption

Consider group Z%. Define FRSA as follows:

e G: (N,p,q) + G(1™); N = pq where p, q are n-bit prime; e,d > 0,
and ged(e,p(N)) = 1, ed = 1 mod ¢(N). Let pk = (N,e), and
sk = (N,d).

« FRAZY — Ly, - a° mod N.

. FSSA (L — L, y— y? mod N.

Observe that

. F;kSA is a permutation on Zj,.

o FRSA = (FkaSA)—l: (z°)4 WHY? ed mod $(N) — | ynod N.7
Then f, is a permutation on Z*NS. The inverse permutation is ac-

tually f4(y) := y¢ mod N, i.e., the same function with a different
exponent, where ed = 1 mod ¢(N) [KL: Corollary 8.22].

”
(xe)d — ped WHY pedmod ¢(N) _ o o4 AT

The RSA problem is inverting FE,CSA, i.e. computing e-th root mod-
ulo N.

7 F;kSA and FSkSA are in fact the same
function (modular exponentiation)
with different exponents (e, d), where
ed = 1 mod ¢(N).

8 Verify on your own

The RSA assumption

FRSA is a one-way trapdoor permutation.

Relationship btween RSA and factoring. It is not hard to see that
RSA < Factoring”. Does hardness of factoring imply hardness of
RSA? This remains an open question. We do know that finding d from
N, e is as hard as factoring N. In your homework, you will show that
computing ¢(NV) is as hard as factoring N as well.

CPA encryption from RSA

A correct idea of designing a CPA-secure PubKE from a TDP is com-
bining a hard-core predicate of F. Recall a hard-core predicate

hc : X — {0,1} of F is an efficiently computatable function such
that

Pr[t) =b: 2+ X,b:= hc(z),b + A(pk, Fpir(z))] < negl(n).

Assume we have (F, hc) being a TDP and a hard-core predicate of
F10. We propose the following PubKE scheme for single-bit messages.

Given (G, F,I) a TDP, and hc a hard-core predicate of it, construct

Il = (G, E, D) for encryting one-bit messages m € {0,1}

o G: (same as in TDP) (pk, sk) < G(1™)

e E: on input pk and m € {0,1}, pick random r + X and out-
put ¢ <= Epp(m) = (Fpr(r), he(r) @ m).

o D: given sk and ¢ = (c1,¢2), m = Dgi(c) := c2 @ he(Isi(c1)).

Theorem 4 (variant of [KL: Thm. 11.33 & 13.5]). II is CPA-secure.

Proof idea. Distinguishing encryption of 0 and encryption of 1 is
equivalent to predicting hc(r) from Fpi(r), which is not feasible since
hc is a hard-core predicate of F'. O

9If we can factor N to get (p, g), then
we can compute ¢(N) = (p—1)(g—1).
Hence computing the trapdoor d =
e~ ! mod ¢(N) becomes easy.

10 For any TDP, there exists a related
TDP for which there is a hard-care
predicate. As a concrete instantiation,
the function of the least significant
bit Isb(x) is a hard-core predicate for
ngA(x), assuming F;ICSA is one-way.

	Trapdoor one-way permutations
	Number theory 101 in 30 mins
	PKC based on factoring
	CPA encryption from RSA

