
1

Winter 2018 CS 485/585 Introduction to Cryptography

Lecture 12
Portland State University Feb. 15, 2018
Lecturer: Fang Song

Draft note. Version: February 19, 2018. Email
fang.song@pdx.edu for comments and corrections.

Agenda
• (Last time) Computational indist., Public key revolution;

• Review of number theory

• Trapdoor one-way permutations

• Factoring and RSA

Trapdoor one-way permutations

Recall Diffie-Hellman envisioned public-key encryption and digital
signature via a imaginary “magic” function. This is formalized as a
trapdoor one-way permutation in modern terminology.

Definition 1. A trapdoor one-way permutation (TDP) is a triple of
poly-time algorithms
• G: (pk, sk) ← G(1n). pk is called a public key and sk is called a

secret key (or trapdoor sometimes denoted as td).

• Fpk: deterministic algorithm y = Fpk(x) and Fpk(·) is a permuta-
tion on domain X.

• Fsk: deterministic inversion algorithm x = Fsk(y).
and it satisfies the correctness and one-wayness conditions:
• Correctness: Fsk(Fpk(x)) = x for all x ∈ X except with negligible

probability (over choice of (pk, sk)).

• One-way (without knowing sk): Fpk is one-way, namely for any
PPT A, it holds that

Pr [x′ = x : (pk, sk)← G(1n), x← X, y = Fpk(x), x
′ ← A(pk, y)] ≤ negl(n) .

How do we construct such a TDP? Diffie-Hellman didn’t know one
in their 1976 paper, and had to wait another year till RSA found one.
So far we are most successful with number-theoretic problems.



2

Number theory 101 in 30 mins

Divisibility and prime numbers

• Integers Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}. ∥a∥ denotes its length
(i.e., number of digits) in binary representation.

• Natural numbers N = {0, 1, 2, . . .}.

• k divides N , k|n, if n is a multiple of k.

• Prime number p ≥ 2: only divisors are 1 and p. Otherwise, call it a
composite number. 1 1 There are infinitely many prime

numbers; and they behave much like
random numbers (of course there
is no randomness). Testing prime
is efficient by both randomized and
deterministic algorithms.

How do we measure complexity of integer arithmetic? We count
the number of basic operations as a function of the length ∥a∥ (say in
binary representation)2.

2 For example, adding two n-bit
numbers takes linear time; multiplying
them takes O(n2) by high-school
algorithm.

Modular arithmetic

Let a,N be integers (N ≥ 2). By the division procedure, we can write

a = qN + r ,

we call q the quotient, and r the remainder3 3 Ex. a = 15, N = 7 and 15 = 2 · 7 + 1.
For integers a, b, n, we write

a = b mod N ,

if a and b have them same remainder when divided by N . N is called
the Modulus.

Let ZN = {0, 1, . . . , N − 1}. We define two operations mod addition
+ mod N and mod-multiplication · mod N . For addition +, every
a ∈ ZN has an unique (additive) inverse in b ∈ ZN such that a + b =

0 mod N .
But if we care about multiplication ·, it is not always possible to

find a′ such that aa′ = 1 mod N4. To characterize which elements in 4 Consider Z6. 2 + 4 = 0 mod 6. But
2 · 1 = 2 mod 6, 2 · 2 = 4 mod 6,
2 · 3 = 0 mod 6, 2 · 4 = 2 mod 6,
2 · 5 = 4 mod 6.

ZN , we need the notion of the greatest common divisor and co-prime
numbers.

Greatest common divisor gcd(a, b): the largest integer that is a
divisor of both a and b5. Euclid’s algorithm can compute gcd(a, b) effi- 5 Ex. gcd(10, 14) = 2.
ciently (i.e., poly in ∥a∥ and ∥b∥). We say a, b co-prime (aka relatively
prime) if gcd(a, b) = 1.

Theorem 2. a ∈ ZN has an inverse, i.e., a′ ∈ ZN such that aa′ =
1 mod N , iff. gcd(a,N) = 1.

Let Z∗
N := {a ∈ ZN : gcd(a,N) = 1} be the set of numbers co-prime

to N6. Euler’s function ϕ(N) := |Z∗
N |. 6 Ex. Z∗

6 = {1, 5}



3

Modular Exponentiation. We will work with exponentiation modulo a
large Modulus N :

ab mod N = a · a . . . a
b times

mod N ,

for a ∈ ZN and b > 0 a positive integer. Repeated squaring algorithm
computes ab mod N in polynomial time.

Theorem 3 (Euler’s theorem). If N ≥ 2 and a ∈ Z∗
N , then aϕ(n) =

1 mod n.

PKC based on factoring

The factoring problem and assumption

Now we introduce the famous problems and assumptions related to
integer factorization.

Define FMULT(p, q) = p · q, where p, q are n-bit prime numbers.
The problem of factorization is to invert FMULT (on random p and q).
The study of factoring has a long history and yet the best factoring
algorithm known still requires running time ∼ exp(n1/3 logn2/3) based
on general number field sieve.

The Factoring assumption
FMULT is a one-way function.

FMULT is not immediately useful for public-key crypto. We intro-
duce a related problem.

The RSA problem and assumption

Consider group Z∗
N . Define FRSA as follows:

• G: (N, p, q) ← G(1n); N = pq where p, q are n-bit prime; e, d > 0,
and gcd(e, ϕ(N)) = 1, ed = 1 mod ϕ(N). Let pk = (N, e), and
sk = (N, d).

• FRSA
pk : Z∗

N → Z∗
N , x 7→ xe mod N .

• FRSA
sk : Z∗

N → Z∗
N , y 7→ yd mod N .

Observe that
• FRSA

pk is a permutation on Z∗
N .

• FRSA
sk = (FRSA

pk )−1: (xe)d
WHY ?
= xed mod ϕ(N) = 1 mod N .7 7 FRSA

pk and FRSA
sk are in fact the same

function (modular exponentiation)
with different exponents (e, d), where
ed = 1 mod ϕ(N).

Then fe is a permutation on Z∗
N

8. The inverse permutation is ac-

8 Verify on your own
tually fd(y) := yd mod N , i.e., the same function with a different
exponent, where ed = 1 mod ϕ(N) [KL: Corollary 8.22].

(xe)d = xed WHY ?
= xed mod ϕ(N) = x mod N .

The RSA problem is inverting FRSA
pk , i.e. computing e-th root mod-

ulo N .



4

The RSA assumption
FRSA is a one-way trapdoor permutation.

Relationship btween RSA and factoring. It is not hard to see that
RSA ≤ Factoring9. Does hardness of factoring imply hardness of 9 If we can factor N to get (p, q), then

we can compute ϕ(N) = (p− 1)(q− 1).
Hence computing the trapdoor d =
e−1 mod ϕ(N) becomes easy.

RSA? This remains an open question. We do know that finding d from
N, e is as hard as factoring N . In your homework, you will show that
computing ϕ(N) is as hard as factoring N as well.

CPA encryption from RSA

A correct idea of designing a CPA-secure PubKE from a TDP is com-
bining a hard-core predicate of Fpk. Recall a hard-core predicate
hc : X → {0, 1} of F is an efficiently computatable function such
that

Pr[b′ = b : x← X, b := hc(x), b′ ← A(pk, Fpk(x))] ≤ negl(n) .

Assume we have (F, hc) being a TDP and a hard-core predicate of
F 10. We propose the following PubKE scheme for single-bit messages. 10 For any TDP, there exists a related

TDP for which there is a hard-care
predicate. As a concrete instantiation,
the function of the least significant
bit lsb(x) is a hard-core predicate for
FRSA
pk (x), assuming FRSA

pk is one-way.

Given (G,F, I) a TDP, and hc a hard-core predicate of it, construct
Π = (G,E,D) for encryting one-bit messages m ∈ {0, 1}
• G: (same as in TDP) (pk, sk)← G(1n)

• E: on input pk and m ∈ {0, 1}, pick random r ← X and out-
put c← Epk(m) := (Fpk(r), hc(r)⊕m).

• D: given sk and c = (c1, c2), m = Dsk(c) := c2 ⊕ hc(Isk(c1)).

Theorem 4 (variant of [KL: Thm. 11.33 & 13.5]). Π is CPA-secure.

Proof idea. Distinguishing encryption of 0 and encryption of 1 is
equivalent to predicting hc(r) from Fpk(r), which is not feasible since
hc is a hard-core predicate of F .


	Trapdoor one-way permutations
	Number theory 101 in 30 mins
	PKC based on factoring
	CPA encryption from RSA

