Intro to Cryptography Lecture 3 Page 1
Portland State U, Winter 2017 JANUARY 26 Instructor: Fang Song

Disclaimer. Draft note. No guarantee on completeness nor soundness. Read with caution, and
shoot me an email at fsong@pdx.edu for corrections/comments (they are always welcome!)

Logistics. HW 2 Problem 1(c) typo. k = —¢ should be k = 0°.
Last time. Perfect secrecy: equivalence, example (one-time pad), limits. Computational secrecy.
Today. Pseudorandom generators and stream ciphers. Block ciphers intro.

FS NOTE: Use attacker, adversary (and eavesdropper till we introduce CPA) interchangeably.

We will introduce two types of ciphers that achieve computational secrecy. Recall the defini-
tion of computational secrecy. Informally, it says that “any efficient (PPT) adversary can not tell
apart the ciphtertexts of two messages except with negligible probability”. We formalize it in an
experiment/game.

1. Adversary is given input 1", and </ outputs a pair of messages
mo, my with [mo| = ||

2. CH generates a key k — G(1"), and a uniform b — {0, 1}. Compute
challenge ciphertext ¢ — Ey(my) and give to <.

3. «f outputs a bit b’ as the guess of b.

4. Define PrivKiZ‘ﬁ(n) the output of the experiment to be 1if b’ = b,
and 0 otherwise. We call < succeeds if PrivKi;‘ﬁ(n) =1.

Figure 1: Adversarial indistinguishability experiment Privk®?}, (n)

Computational secrecy says that Pr[PrivKi?y‘ﬁ(n) = 1] < 1/2 + negl(n) for any PPT Adv.
Namely no efficient adversary can do better than an essentially random guess. Note: subscript
specifies adversary and the scheme.

1 Stream Ciphers & Pseudorandom generators

How to construct a computationally secret cipher? Recall our hope was to encrypt a possibly
long message with a “short” key. Where to start? Well, cryptographers are kinda lazy. They usually
start by adapting or fixing existing constructions. So far we've seen OTP which is perfectly secret
with a random key: Ex(m) : ¢ := k ® m. We know unfortunately the key has to be as long as the
message, but is it possible to start with a short random key (call it a seed), and expand it to a long
“random” string? Of course we can not hope for the resulting string to be truly random (why not?),
but maybe it suffices for the string to “look” random, as least as far as an efficient adversary is
concerned. This motivated people to define the notion of a pseudorandom generator (PRG in
short), and the encryption scheme by plugging a pseudorandom key to OTP is usually called a

http://www.fangsong.info/teaching/w17_4585_icrypto/
http://www.fangsong.info/
mailto:fsong@pdx.edu

Intro to Cryptography Lecture 3 Page 2
Portland State U, Winter 2017 JANUARY 26 Instructor: Fang Song

stream cipher in practice. For this course, we may abuse the terminology and identify PRGs and
stream ciphers.
Let’s define a PRG formally:

e /(n): a polynomial ¢(n) > n. Call it the expansion factor.
o G:1{0,1}" — {0,1}Y": deterministic polynomial-time algorithm.
Definition 1. We say G is a pseurandom generator (PRG) if

1. (Expansion) ¢(n) > n for every n.

2. (Pseudorandomness) for any PPT o/, Pr[PRG,c(n) = 1] < 1 + negl(n).

How to define “look” random? Again, we can think of a distinguishing game (Fig. 2):

1. CH generates a uniform bit b — {0, 1}.

e if b=0, choose r — {0,1}¢ uniformly at random.

e if b=1, choose a random seed s — {0,1}”” and compute r :=
G(s).

2. Adversary is given input 1” and r. </ outputs a bit b’ as the guess
of b.

3. Define PRG,, ;(n) the output of the experiment to be 1 if b’ = b,
and 0 otherwise. We call «f succeeds if PRG ¢(n) = 1.

Figure 2: PRG indistinguishability experiment PRG, ¢ (n)

We usually call such an adversary a distinguisher and use distinguisher and adversary/attacker
interchangeably in this context. We often call the output from a pseudorandom generator a
pseudorandom string, although this is totally nonsense’.

From a slightly different perspective, we can imagine that an adversary as performing some
efficient statistical test and output one bit indicating if an input string has passed the test
(e.g., does the string has more than 10 consecutive 0s). We want that for any efficient test, a
pseudorandom string is equally likely to pass it as a truly random string would (except for small
discrepancy). Therefore can give an alternate formulation of the pseudorandom condition: for
any efficient distinguisher D,

Pr[D(G(s) =1:5 —{0,1}"] = Pr[D(r) = 1: 1 — {0,1}*™]| < negl(n). (1.1)

Eqgn 1.1 is what [KL: Def. 3.14] used. [KL: Exercise 3.5] Prove the two formulations are
equivalent.

ISimilarly, it makes no sense to say any fixed string is “random” though we often do so. Rather, pseudorandomness
is a property of a distribution on strings.

http://www.fangsong.info/teaching/w17_4585_icrypto/
http://www.fangsong.info/

Intro to Cryptography Lecture 3 Page 3
Portland State U, Winter 2017 JANUARY 26 Instructor: Fang Song

1.1 Discussion on pesudorandomness

PRG is impossible against unbounded attackers.) Suppose G : {0,1}" — {0,1}*"” is a PRG, con-
sider the following distinguisher

Given r € {0, 1}, D does
1. Exhaustively search s € {0, 1}" such that G(s) = r.

2. If there exists such an s, output 1. Otherwise, output 0.

Figure 3: An inefficient distinguisher for any PRG

The key observation is that the number of possible outputs of G is at most 2", yet there
are 2/ strings in total of length ¢(n). Namely, G will only produce a tiny fraction of all £-bit
strings. Therefore, if r = G(s) (i.e., generated by PRG), Pr[D(G(s)) = 1] = 1. Butif r — {0, 13 jg a
uniformly random string, Pr[D(r) = 1] = Pr[r € {G(s) : s € {0,1}"}] = 23—("”) = W Hence

1

PID(GE) =11 =1-PrD(=11 21~ 7=,

which is 1/2 even for the least ambitious goal of getting one-bit surplus (¢(n) = n+1). As £(n)
grows, the difference (break of PRG) gets bigger and bigger.

Lesson: has to restrict to efficient distinguishers only.
Seed length. Seed is analogous to the secret key in an encryption scheme. It must be sufficiently
long to avoid brute-force attack.
Existence of PRGs. Unfortunately, we do not know yet how to prove existence of PRGs uncondi-
tionally, although we have strong evidence to believe so. We will talk more later. For now, let’s
state the first important assumption in this course.

Assumption 2. There exists a PRG G :{0,1}"" — {0, 1M with expansion factor ¢(n) > n.

1.2 PRG to comp. secret encryption

Now that (we assume that) we have a PRG at hand, let’s complete our goal in the beginning and
give a computationally secret encryption scheme with shorter keys.
Correctness easy to verify.

Theorem 3 (KL-Thm.3.18). II is computationally secret (i.e. has indistinguishable encryptions in
the presence of an eavesdropper), assuming Assumption 2.

Proof by REDUCTION. Here we introuduce a general framework for security proofs in modern
cryptography. (An extremely simple but useful technique called hybrid argument is also implicit
in the proof to come, but we will treat it more carefully in a future lecture). We do not prove
unconditionally that a construction is secure, but rather, we assume some lowe-level primitive

http://www.fangsong.info/teaching/w17_4585_icrypto/
http://www.fangsong.info/

Intro to Cryptography Lecture 3 Page 4
Portland State U, Winter 2017 JANUARY 26 Instructor: Fang Song

Given PRG G : {0,1}"* — {0,1}". Security parameter 1”. Construct IT =
(KG,E,D):

* KG: choose uniform key k — {0, 1}".
e E:c=Er(m):=G(k)® m.

e D:m=Di(m):=G(k)sc.

Figure 4: A fixted-length comp. secret encryption from PRG

or problem is secure or hard to solve, and then prove the construction is secure under this
assumption. We do so by presenting an explicit REDUCTION, which transforms any efficient
adversary <f that succeeds in “breaking” the construction into annother efficient algorithm ¢’
that sovles the problem that was assumed to be hard. This will demontrate a contradiction. It’s
often helpful to draw a redcution diagram:

FS NOTE: Draw reduction diagram

To recap: to prove

if assumption S holds, then scheme II is secure;

we use a reduction to show the contrapositive

if one breaks I1, then one can also violate the assumption S.

Proof. Proof of Thm. 3 Assume there is an PPT adversary ¢ such that F’rivKg;‘,‘f1 (n)=1/2+¢&(n),
for €(n) = 1/ p(n) for some polynomial p. We construct a distinguisher
FS NOTE: Draw picture

Distinguisher D: Given input string w € {0, 1}[(n)
1. Run </ (1" to obtain a pair of messages ny, m € {0,1}*?
2. Choose b — {0,1}. Set c:= w & my,.

3. Give ¢ to &/ and obtain b’. Output 1 if b’ = b, and 0 otherwise.

We will demontrate that

PriD(w)=1:w — {0,131 —Pr[D(w) = 1: w = G(s), s — {0,11"]| = e(n),

which shows a contradiction since it is supposed to be negligible by Assumption 2.

http://www.fangsong.info/teaching/w17_4585_icrypto/
http://www.fangsong.info/

Intro to Cryptography Lecture 3 Page 5
Portland State U, Winter 2017 JANUARY 26 Instructor: Fang Song

o w—{0,1}°"" . If we look at what < sees in the reduction, the challenge cipher c := w ® my,
is exactly what one gets from OTP with uniformly (long) random key w. We know that
Pr[b’ = b] = 1/2 by the perfect secrecy of OTP, and therefore Pr[D(w) = 1: w — {0,1}*"?] =
1/2.

e w=G(s),s — {0,1}". Then « is playing exaclty the indistinguishablity game for II, and
hence Pr[D(w) =1: w = G(s),s — {0,1}""] = Pr[PrivK?‘l’-[(n) =1]=1/2+¢€(n).

Therefore,

PriD(w)=1:w — {0,1}P]—Pr[D(w)=1: w=G(s),s — {0,1}"]| = e(n) = 1/p(n).

1.3 Constructing PRGs

General approaches for constructing PRGs. Why we believe in Assumption 2?

* We can construct secure PRGs under rather weak assumptions that one-way functions
exist, or some computational problems can not be solved efficiently. More in a future
lecture.

* We have candidate constructions in practice — stream ciphers (here).

* We can also get PRG from block ciphers (coming soon).

Getting more and more. parallel composition and sequential (Blum-Micali) composition.
Constructions in practice.

e Trivially insecure examples: G:s— slls, G: S— $¢S;—151Sp-2,---Sn—150, €tC.

* Examples that fail (easily): Parity check PRG.

n—

G:s:so,...,sn_l»—>s||ealzo1 S;.

How do you distinguish it from a uniformly random string of length n +1?

* DVD encryption system: linear feedback shift register (LFSR) (also easily breakable). Parity
check is a special linear function, and we can generalize to use general linear functions
fiso...8p-1 — ?:_01 c; - s; for ¢; € {0,1} (e.g., Parity check f is the one with ¢; = 1 for all
i). In LFSR, s is treated as a state that keeps updating. G(s) is computed by repeating the
following ¢(n) times. FS NOTE: draw diagram

S0y Sn—1— S1,---»Sny, [(S0,...Sp—1), output sp

http://www.fangsong.info/teaching/w17_4585_icrypto/
http://www.fangsong.info/

Intro to Cryptography Lecture 3 Page 6
Portland State U, Winter 2017 JANUARY 26 Instructor: Fang Song

Observing n cosecutive output bits, we can predict all future outputs if we know f (i.e.
ci). Even if we don’t, we can find them by observing 27 bits output using linear algebra
(Gaussian elimination).

e Good examples?: Trivium, RC4 (popular but vulnerabilities exist), subset-sum generator,
etc.

2 Pseudorandom functions & Block ciphers

Now we come to the next type of ciphers: block ciphers. Block ciphers are the work horse in
cryptography (espeically in private-key cryptography). Encryption, Message authentication,
Hash functions... we will see many examples soon.

The abstract object is the so called pseudorandom functions (PRFs). Instead of considering

“random-looking” strings, we cosider “random-looking” functions. Roughly, it means that it
behaves the same as a truly random function, at least as far as an efficient observer is concerned.
Again, it makes no sense to say any fixed function is pseudorandom (or random in any sense). It
refers to a distribution on functions. But before we talk about pseudorandom functions, let’s be
clear what we mean by a truly random function.
Random functions. Consider % := { f:{0,1}* — {0, 1}”} be the collection of all possible functions
that maps n-bit strings to n-bit strings. Similar to what we mean by a random string, a random
function is just a sample from & uniformly at random. How many are there? Well if we think
about the truth table of a function f: {0,1}" — {0, 1}", for each input string x there are 2" possible
output strings we can map it to. Therefore

|F|=2"-2". ., 2" =212
2" times

This means you need Q(log|%|) = Q(n2") bits to sample or write down the description of a
random function.

There is a more intuitive and operational perspective of thinking about a random function.
Imagine yourself as a machine implementing a random function, when an input x comes, you
can just sample a y < {0, 1}" uniformly at random. The only thing you need to make sure is keep
consistency i.e. give the same answer if an input comes again. This can be done by maintaining
a lookup table for instance. This sample “on-the-fly” viewpoint will be useful for a lot of the
analysis in the future.

2Read more on [Boneh-Shoup 3.7 - 3.9], and Handbook of Applied Cryptography (http://cacr.uwaterloo.ca/hac/)
Chapter 6.

http://www.fangsong.info/teaching/w17_4585_icrypto/
http://www.fangsong.info/

	Stream Ciphers & Pseudorandom generators
	Discussion on pesudorandomness
	PRG to comp. secret encryption
	Constructing PRGs

	Pseudorandom functions & Block ciphers

