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Disclaimer. Draft note. No guarantee on completeness nor soundness. Read with caution, and
shoot me an email at fsong@pdx.edu for corrections/comments (they are always welcome!)
Logistics.

e D2L: forward d2l email to your email account. Solutions will also be posted on d2L.

* DRC: "Would you like to make money for taking notes? If you are willing to share your
notes, you will be paid up to $25 per credit hour to scan and upload your notes to DRC
Online. If you're interested go to the DRC homepage: pdx . edu/drc, select DRC Online,
and follow the link to sign up as a note taker. You can find answers to most questions by
selecting "Note Takers" in the top menu. Thanks."

* Background survey: Glad to see many of you actually showed interest, not just “to get the
credit”. Level of confidence: math proofs and probability have the lowest overall scores.
Suggested readings: Resource page — useful links: tips on math proofs; Probability: MIT
course, draft book!, Part IV Chapters 17 - 20; CLRS? Appendix Part C in particular.

e (Clarification: reading preferable before class but not required. Quizzes are based on
materials in lectures already given.

Last time. Overview, math background, perfect secrecy.
Today. Perfect secrecy: equivalence, example (one-time pad), limits. Computational secrecy.
Note: “Random” in this course refers to some general random experiment/phenomenon,
and we will explicitly say “uniformly random” to mean a uniform distribution.
Recall an private-key encryption scheme Il = (G, E,D)with E: £ x M — € & D : X x€ — M.
G is a randomized key generating algorithm. E, D can be either deterministic or randomized. Let
K, M, C be random variables taking values in £, 4, € respectively. K is distributed according
to the key-gen algorithm G, and M represents a priori the distribution of the messages being
sent. C is deduced by Ex (M), denoting the resulting ciphertext from random key and message.
We assume that K and M are independent, and the distribution of M is known to the attacker.

1 Perfect secrecy

1.1 Equivalent Definitions

Definition 1 (KL-Def.2.3). II is perfectly secret if for every

Pr(M=m|C=c)=Pr(M =m). (1.1

https://courses.csail.mit.edu/6.042/springl6/mcs.pdf
2nttps://mitpress.mit.edu/books/introduction-algorithms
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Definition 2. I1is perfectly secret if for every m, m' € .4 and every c€ €

Pr(Ex(m) =c) =Pr(Ex(m) =¢). (1.2)

Lemma 3. Definition 1 is equivalent to Definition 2.

Proof. We need to show both directions: Def. 1 = Def. 2 (KL-EX.2.4) and Def. 2 = Def. 1 (KL
book).

* (Def. 2 = Def. 1) Fix an arbitrary ¢ € €. Observe that for every m' € .4

Pr(C = c|M = m') € Pr{Ex (M) = c|M = m') = Pr[Ex(m') = c].
But Def. 2 says that Pr[Eg(m') = c] = Pr[Ex(m) = c| for every m, m' € /. This means that
for every m’, Pr[C = ¢c|M = m'] is a constant and denote it .. For any m € .4 and c € €
(assuming Pr[C = c] # 0), we have

PriC=c|M = m]-Pr(M = m]
Pr[C =]
Pr(C =c|M = m]-Pr[M = m]
Y meu PrlC=clM=m']-Pr[M = m/]
Oc
Y eu Oc - PrIM = m]
= Pr[M =m]

Pr(M = m|C = c]

e (Def. 1 = Def. 2) For any c € ¢ and m € .4, by Baye’s theorem we have

Pr(C=c|M=m] =Pr[M = m|C =c]-Pr[C =c]/Pr[M = m].

But we know by hypothesis that Pr[M = m|C = c] = Pr[M = m], and this implies that
Pr[Egx(m)] := Pr[C = c|M = m] = Pr[C = c] =: 6 holds for any m and c. Therefore for any
m,m' € 4 and c € €, Pr[Ex(m) = c] = 6. = Pr[Ex(m’) = c].

O

Perfect indistiguishability. Def. 2 can be read as the distributions (over €) resulting from en-
crypting one message m and encrypting another message m' are identical. From the attackers
point of view, these two distributions are indistinguishable. We can reformulate this by a ex-
periment or game between an attacker/adversary « and the so-called challenger CH. This
gives another equivalent definition of PS. This will also serve as the template for many of our
definitions in the future.

Definition 4. I1 = (G, E, D) is perfectly indistinguishable if for every attacker <, it holds that

Pr[PrivkZY ] = % (1.3)
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FS NOTE: Draw a game diagram
1. Adversary & outputs a pair of messages mg, m; € 4.

2. CH generates a key k — G, and a uniform b — {0,1}. Compute
challenge ciphertext ¢ — E}(my) and give to «/.

3. «f outputs a bit b’ as the guess of b.

4. Define the output of the experiment to be 1 if b’ = b, and 0 other-

wise. Write PrivK®}}, = 1 if the experiment output is 1, in which

case we call o/ succeeds.

Figure 1: Adversarial indistinguishability experiment Priva;‘ﬁ

Lemma 5 (KL-Lemma 2.6). Perfect secrecy is equivalent to perfect indistinguishability.

Proof in HW.
Remarks: why care about so many equivalent definitions?. Different characterizations give a
more comprehensive understanding. In different situations, some are easier to work with. Don’t
constrain yourself to one!

2 One-time Pad

We have a nice definition. But can we achieve it? Answer is yes. One-time-pad (OTP) by Vernam,
patented in 1917. However, the formal analysis, i.e. definition and proof of security, had to wait
for about 25 years till Claude Shannon’s seminal work. Shannon was a mathematician, electrical
engineering and cryptographer. He was the founding person of information theory, and he was
also one of the early researcher in artificial intelligence. We are studying his main contribution
in cryptography.

KL Construction 2.8. Fix integer ¢ > 0. £ = ./ =€ = {0, 1}[.
e G: sample a uniformly random key k — %".
e E:oninput me /4 and k€ %, outputc:=m@e k.

e D:oninputce ¥ and k€ £, output m:=ce k.

Figure 2: Construction of one-time-pad
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Fact: @ is XOR bit-wise. OTP is correct, simple and actually got used quite a lot by national
intelligence angencies in mid-20th.

Theorem 6 (KL Theorem 2.9). The one-time-pad encryption scheme is perfectly secret.

Idea. Ciphertext is a uniformly random string regardless of the plaintext.

Proof. Use Def. 2. Forany m,m' € /4 and c€ 6.

PriEx(m)=c]= Pr [kem=c]=1/2.
k— X

Similarly Pr(Ex(m) = c] =Pri_ylkem' =c] = 1/2¢. Hence Pr[Ex(m) = c] = Pr[Ex(m') = c] for
arbitrary m, m’ and c. This concludes the proof. O

Crucial observations on one-time-pad.

* Key has equal length as a message. |k| = |ml|.

* “One-time” means “one-time”, seriously! Consider encrypting m and m' under the same
key k, we get c=m @ k and ¢’ = m' ® k. Having ¢ and ¢/, one can compute co ¢’ = me m'.
This can reveal a lot of information and potentially both m and m'. 3

We will see that these are not just shortcomings of a particular encryption scheme, OTP. But
actually both are inherent limitations of perfect secrecy.

2.1 Limitations of perfect secrecy

Limitation 1: Perfect secrecy cannot avoid long keys.
Theorem 7 (KL Theorem 2.10). Supposell = (G, E, D) is perfectly secret, then | £ | = |/ |.

Proof. Proof by Contradiction. Suppose, I1 is perfectly secret but & = {0,1} and .« = {0,1}" with
¢ < n. Consider a uniform distribution over the ./, i.e. Pr[M = m] = 1/2" for all m € ./ . Perfect
secrecy then says Pr[M = m|C = c] = Pr[M = m] = 1/2". However, consider an attacker that
guesses a key at random, then it will be correct with prob. 1/ 2% in which case s/he can recover
m from c with certainty. Therefore Pr[M = m|C = c] = Pr[guess correct key] = 1/ 20> 1/2m, O

Attacking the system with prob. 1/2¢ may not seem too bad, but this violation can be boosted.
HW bonus problem has a strengthen of the proof here.
Limitation 2: “one-time” only. It is inherent too, but more general (applies to computational
secrecy too). It has to do with the threat/attack model, i.e., secrecy against eavesdropping is not
strong enough to ensure securely encrypting multiple messages under the same key.

3The most embarrassing example of reuse the same one-time-pad key would be the Venona Project
(https://en.wikipedia.org/wiki/Venona_project). See avisual demonstration http://crypto.
stackexchange.com/questions/59/taking-advantage-of-one-time-pad-key-reuse.
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3 Computational secrecy

Resolving limitation 1. To get away with long keys, have to appeal to relaxations in perfect
secrecy.

Recall the perfect indist. formulation: distinguishing prob. must be exactly 1/2 (i.e. attacker
always fails completely) against any attacker (i.e. can be computationally unbounded) .

* consider “efficient” attackers only

e accept “small” break of scheme

Both are necessary. Proof of Theorem 7 gives an efficient attack. Achieving small break against
unbounded attackers need long key too. KL-Ex. 2.11,2.12.

How to interpret the constraints, two general approaches, concrete and asymptotic.
Concrete approach.

Template for concrete security
A scheme is (t, €)-secure if for every adversary running for time at most ¢
succeeds in breaking the scheme with probability at most €.

Example 8. No adversary running at most 28 CPU cycles can break the scheme with prob. better
that 27%°. Modern private-key encryption often assumes optimal security: when the key has n
bits (i.e. key space size 2"*), any adversary running for time ¢ can break the scheme with prob. at
most ct/2" for some constant c.

Important in practice, but difficult to provide and often misleading: what type of computing
power, what algorithm was implemented?.
Asymptotic approach. WE WILL TAKE THIS! Security parameter n — think of it as the key length,
and everything is viewed as a function of n rather than concrete numbers: running time of all
algorithms (including the adversary) and success probability.

“Efficient” = PPT, and “Small”= negligible.

Template for asympototic security
A scheme is secure if for every probabilisitic polynomial-time adversary
&/ carrying out an formally specified attack, the probability that <
succeeds in the attack is negligible.

More about asymptotics.

Definition 9. A probabilistic polynomial time (PPT) algorithm is an algorithm with access to
an infintely long random tape, which for all inputs x € {0,1}* and random tapes halts within
p(|x|) steps for some polynomial p. A PPT algorithm A is said to compute f:{0,1}* — {0, 1}* with
probability g if for all inputs x € {0, 1}*, we have Pr[A(x) = f(x)] = g.

A negligible function is one that decreases asymptotically faster that any inverse polynomial
function.
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Definition 10. A function f :N — R is negligible if for every positive polynomial p, there is an N
such that for all integers n = N it holds that f(n) < ﬁ.
Example 11. 2_",2_\/ﬁ, n~108" gre all negligible.

We usually denote an arbitrary negligible function by negl. Rule of thumb: n® adversary
succeeds with prob. at most 27957,

In practice need concrete security. Asymptotic does not guarantee security for small n, but
usually can be translated into concrete security.

3.1 Defining computational secrecy

Informally, no additional info. can be learned by efficient adversary except with negligible proba-
bility. This was formalized as semantic security, the first definition for computational secrecy
analogous to Def. 2 for perfect secrecy, by Goldwasser and Micali. But it is more complex and dif-
ficult to work with. We adapt the indistinguishablity formulation with our relaxations (proposed
in the same paper and was proven equivalent to semantic security later [MicaliRacoffSloan]).
Setup: goal & threat model (eavesdropping one ciphertext).
FS NOTE: Emphasize again threat model only specifies ability but not the strategies.
Distinctions from Perfect indist:

* security parameter 7.

 challenge messages |my| = |m;|, otherwise no constraint on length (of course polynomial
if o runs in polynomial time).

FS NOTE: Draw a game diagram

1. Adversary is given input 1", and «/ outputs a pair of messages
mo, my with [mo| = |m|.

2. CH generates a key k — G(1"), and a uniform b — {0, 1}. Compute
challenge ciphertext c — Ey(my) and give to <.

3. «f outputs a bit b’ as the guess of b.

4. Define PrivKiZ‘ﬁ(n) the output of the experiment to be 1if b’ = b,
and 0 otherwise. We call < succeeds if PrivKi;‘ﬁ(n) =1.

Figure 3: Adversarial indistinguishability experiment Privng‘,‘ll-I (n)



http://www.fangsong.info/teaching/w17_4585_icrypto/
http://www.fangsong.info/

Intro to Cryptography Lecture 2 Page 7
Portland State U, Winter 2017 JANUARY 12 — JANUARY 24 Instructor: Fang Song

Definition 12 (KL-Def. 3.8). A private-key encryption scheme I1 = (G, E, D) is computationally
secret or has indistinguishable encryptions in the presence of an eavesdropper (EAV-secure in
short) if for all probabilistic polynomial-time adversaries < there is a negligible function negl
such that, for all n

Pr[PrivkZY (n) = 11 < 1/2 +negl(n),

where the probability is take nover the randomness of «/ and the randomness in the experiment
(choosing the key and bit b, as well as any randomness in E).

Encryption and Plaintext length: [KL: p56 & Excercise 3.2] (in HW).
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