
QIC 890/891 Selected Advanced Topics in Quantum Information

Module 1: Quantum Algorithms for Number Theory Problems

Lecture 1
Lecturer: Fang Song, University of Waterloo May 4, 2015

I Theme of this crash course. In this short module, we will look at a central problem in
quantum computing, the Hidden Subgroup Problem (HSP) on an abelian group G. We will see
efficient quantum algorithms for HSP instances where G is finite abelian, Z, R and Rn. Then
we will discuss how quantum computers can solve efficiently a few interesting problems from
number theory, e.g., factoring large integers and finding the unit group of a number field, by
reducing them to the HSP problem. These number theory problems are usually believed hard
classically and there are many crypto-systems based on them. We will show a few examples of
crypto-systems that will become broken by quantum computers.

A brief syllabus:

• Lecture 1. HSP on finite abelian groups, QFT, and phase estimation.

• Lecture 2. Period finding on Z and R, and solving factoring and Pell’s equation.

• Lecture 3. Period finding on Rn for arbitrary n.

• Lecture 4. Computing the unit group in a number field, and connections to lattice-based
crypto.

Basic familiarity with quantum information and quantum algorithms is assumed.
Supporting materials for this course:

• Lecture notes by Andrew Childs [?] and Umesh Vazirani [?].

• Research papers as we go along.

• and of course our loyal friend: QIQC by Nielsen & Chuang [?]

I Content of this lecture. This lecture will review quantum Fourier transform, phase estimation,
and HSP on finite abelian groups. We will also see how to apply these HSP algorithms to break a
construction of (psudo-)random permutation based on Feistel networks, and any crypto-systems
based on discrete-logarithm.

1 HSP on (finite) abelian groups

All groups we consider in this course are abelian. Let’s first study the case that G is finite.

Definition 1 (HSP on a finite abelian group). Given a black-box function f : G → S, where G is a
known group (use addition ‘+’ as group operation) and S is a set. f satisfies the promise that:

f (x) = f (y) if and only if x ∈ y + H

for some unknown subgroup H ≤ G. The goal is to find H (i.e., to compute a generating set for H) using
queries to f .

1-1

We usually say that f hides H. We will denote such an instance as HSP(f , G). The complexity
of an algorithm for solving it is parameterized by log |G|. For example, an algorithm is considered
efficient if it runs in time poly(log |G|).
I Quantum Fourier Transform. The central tool we need, which is perhaps the most important
unitary transformation in quantum computing, is the quantum Fourier transform (QFT). For finite
abelian G, QFT is

FG :=
1
|G| ∑

x∈G
∑

y∈Ĝ

χy(x)|y〉〈x|

The objects appearing in the expression are explained below.

• χy: yth character of G. A character is a homomorphism from G to C. Hence χy(x) is the
value of χy evaluated at x ∈ G.

• Ĝ := {χy} is the set of characters of G and is called the dual group of G. G and Ĝ are
isomorphic, so it is usually convenient to label Ĝ by elements of G.

Fact: Distinct characters are orthogonal in the sense that

∀y, y′ ∈ Ĝ,
1
|G| ∑

x∈G
χy(x)χ∗y′(x) = δy,y′

We will see later how to implement FG by a poly-size quantum circuit. Now we apply QFT
to solve HSP(f , G).

1.1 Quantum algorithm for HSP(f , G)

I The algorithm.

1. create uniform superposition over the group (by FG on |0〉) and evaluate f , we have

|0, 0〉 7→ 1√
|G| ∑

x∈G
|x〉| fx〉

2. measure the 2nd register we get a coset state

|x + H〉 :=
1√
|H| ∑

h∈H
|x + h〉

for a random x ∈ G.

3. Apply FG on |x + H〉, we get

1√
|H| · |G| ∑

y∈Ĝ
∑

h∈H
χy(x + h)|y〉 =

√
|H|
|G| ∑

y∈Ĝ

χy(x)χy(H)|y〉

with χy(H) := 1
|H| ∑h∈H χy(h).

4. measure and get y.

1-2

5. Repeat the above O(log |G|) times and recover H from the samples {χy} by classical post-
processing.

The quantum circuit is shown below.

Quantum circuit for HSP

I Analysis. Note that χy restricted on H is also a character on H. We claim that in step 4 we
measure y ∈ Ĝ if only if χy(h) = 1, ∀h ∈ H. This is because if χy(h) 6= 1 for some h ∈ H,
which means that χy is not the trivial character χ0 : ∀x ∈ G, χ0(x) = 1, then by orthogonality of
characters

χy(H) =
1
|H| ∑

x∈G
χy(x) =

1
|H| ∑

x∈G
χy(x) · χ0(x) = 0 .

This means that we get random samples of χy whose kernel {x ∈ G : χy(x) = 1} contains
H. With sufficiently many O(log |G|) samples, we can find H with high probability by efficiently
computing the intersection of all the kernels. The details of the classical post-processing are
standard (see for example [?]).

1.2 Examples and Applications in Cryptography

I G = Zn
2 : Simon’s problem. In Simon’s problem, we have a function f : Zn

2 → S, such that
f (x) = f (y) iff. x = y+ s for some unknown s ∈ {0, 1}n. This readily reduces to HSP on G = Zn

2 ,
where H = {0, s}. Hence we can find s efficiently on a quantum computer. To the contrary, it is
easy to argue that any probabilistic classical algorithm needs Ω(2n−1) queries to f .

Simon’s algorithm has an interesting application in attacking a construction of pseudo-random
permutations from pseudo-random functions in classical cryptography.

3-round Feistel network

Fact: If each fi, i = 1, 2, 3 is chosen independently from { f : {0, 1}n → {0, 1}n} uniformly at
random, then any probabilistic algorithm making o(2cn) queries can not distinguish Π(fi) from
a truly random permutation P : {0, 1}2n → {0, 1}2n.
Remarks. If we substitute pseudo-random function for each random round function fi, we obtain
a pseudo-random permutation.

However, this constructions fails against quantum algorithms. Kuwakado and Morii [?] ob-
served that the 3-round Feistel construction actually possess certain structure that allows one
to define an instance of Simon’s problem from Π(fi) with high probability. Meanwhile, a truly
random permutation has no such structure. Therefore a quantum distinguisher can tell them
apart efficiently.
I G = ZN ×ZN : discrete logarithm. Discrete logarithm in L = 〈g〉. Let N = |L| be the order of
g. Given y ∈ L find x ∈ ZN such that gx = y. Denote such an x as logg y.

It reduces to HSP(f , G), where G = ZN ×ZN and f is defined as follows:

f (a, b) = xagb .

Hidden subgroup H = L0 := {(a, b) ∈ Z2
N : xagb = 1}

f (a, b) = f (a′, b′)⇔ xagb = xa′gb′ ⇔ xa−a′gb−b′ = 1⇔ (a− a′, b− b′) ∈ L0 .

N × N grid of coset lines

1-3

2 Implementing QFT

I G = Zn
2 . In this case, FZn

2
= 1√

2n ∑x,y∈Zn
2
(−1)x·y|y〉〈x| = H⊗n.

I G = ZN , N = 2n. For any m ∈ Z, denote ωm := e
2πi
m . There is a simple product formula for

FZ2n :

FZ2n |x〉 =
1√
2n ∑

y∈Z2n

ω
x·y
2n |y〉 = ⊗n−1

k=0 |zk〉

with |zk〉 = 1√
2
(|0〉+ ωx·2k

2n |1〉) = 1√
2
(|0〉+ e2πi(x02k−n+...+xn−1−k2−1)|1〉).

Let R` be the single-qubit rotation operator

R` :=
(

1 0
0 ω2`

)
.

Then FZ2n can be implemented by O(n2) Hadamard gates and controlled rotation gates.
I Phase Estimation. We need a tool, called phase estimation (PhE) to proceed. Kitaev [?] proposed
the PhE problem and gave an efficient quantum algorithm for it. It turns out to be an extremely
useful primitive, as we will see many applications later. (I personally feel that its potential power
is not yet fully exploited.)

The PhE problem is defined as follows. Given a unitary operator U and an eigenstate |ψ〉 of
U such that U|ψ〉 = e2πiθ |ψ〉, θ ∈ [0, 1). We want to compute (a rational approximation of) θ.

P.E circuit

1. prepare the state: ∑x∈Z2q |x〉|ψ〉.

2. apply the operator ∑x∈Z2q |x〉〈x| ⊗Ux and get

1√
2q ∑

x∈Z2q

e2πiθx|x〉|ψ〉

3. apply inverse Fourier transform F−1
Z2q (run the circuit above backward) on the 1st register,

we get
1
2q ∑

y∈Zn
2

∑
x∈Z

q
2

ω
(2qθ−y)x
2q |y〉|ψ〉 .

4. measure the 1st register and get y ∈ Zn
2 . Output θ̂ := y/2q.

Fact: We can measure an εp-approximation θ̂ (i.e., |θ̂− θ| ≤ εp) with probability Ω(1− εmeas),
when 2q = Ω(1

εp
· 1

εmeas
).

We omit the analysis here since we will see a similar one later.
Phase estimation can be interpreted more generally. For example, consider {|ψi〉 : i = 1, ..., k}

be a set of mutually orthogonal states which are all eigenvectors of U with U|ψi〉 = e2πiθi |ψi〉.
Now let |ϕ〉 = ∑i αi|ψi〉 ∈ span(|ψ1〉, . . . , |ψk〉) be some state. What happens if we input |ϕ〉 in
the PhE algorithm? By linearity, we are basically picking a random i according to {pi := |αi|2}
and running PhE on |ψi〉. In other words, a projective measurement is effectively made on |ϕ〉
under {|ψi〉} and conditioned on measuring i we get an approximation of θi at the same time.

1-4

I G = ZN , arbitrary N ∈ Z. Note that it suffices to implement FZN on every basis vector

|x〉 7→ |x̃〉 := FZN |x〉 =
1√
N

∑
y∈ZN

ω
xy
N |y〉 .

It is straightforward to implement |x, 0〉 7→ |x, x̃〉. But we need to uncompute x to implement
|x〉 7→ |x̃〉. It’s time to have our friend PhE to help us for the first time.

Consider U := ∑x∈ZN
|x − 1 mod N〉〈x|, we can verify that |x̃〉 is an eigenstate of U with

eigenvalue e2πix/N .

U|x̃〉 = 1√
N

∑
y∈ZN

ω
xy
N |y− 1 mod N〉 z:=y−1 mod N

=
1√
N

∑
z∈ZN

ω
y
Nωxz

N |z〉 = e2πix/N |x̃〉 .

Therefore if we feed |0, x̃〉 in the PhE circuit, we will get |x, x̃〉 (approximately). This means
that if we run the PhE circuit in reverse on |x, x̃〉, we can uncompute x from x̃ and hence imple-
ment FZN .

Quantum circuit for FZN

I Any finite abelian G. Since G can be written as direct product of cyclic factors ZNi , FG =
⊗FZNi

can be implemented by tensor product of QFT over each cyclic factor.

1-5

	HSP on (finite) abelian groups
	Quantum algorithm for HSP(f,G)
	Examples and Applications in Cryptography

	Implementing QFT

