
CS 410/510 Introduction to Quantum Computing

Homework 4
Portland State U, Spring 2020 04/26/2020
Lecturer: Fang Song Due: 11:59pm PDT, 05/10/2020

Instructions. This problem set contains 20 pages (including this cover page) and 5
questions. Problems marked with “[G]” are required for 510 students. Students enrolled
in 410 will get bonus points for solving them. A random subset of problems will be
graded.

Your solutions will be graded on correctness and clarity. You should only submit work
that you believe to be correct, and you will get significantly more partial credit if you
clearly identify the gap(s) in your solution. It is good practice to start any long solution
with an informal (but accurate) summary that describes the main idea.

You need to submit a PDF file via Gradescope before the deadline. Either a clear scan
of you handwriting or a typeset document is accepted. You will get 5 bonus points for
typing in LaTeX (Download and use the accompany TeX file).

You may collaborate with others on this problem set. However, you must write up your
own solutions and list your collaborators for each problem.
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1. (Measurement in Simon’s algorithm) Our analysis in class assumes that we measure
the bottom n qubits right after the query to the quantum black-box. In this problem,
we investigate different timing for this measurement.

(a) (5 points) Suppose we do not measure immediately, and move on to apply
Hadamard to each of the top n qubits. Write down the quantum state of the
entire system (2n qubits) after this step.
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(b) (5 points) Then we measure the bottom n qubits in the computational basis.
Suppose the outcome is a ∈ {0, 1}n, describe the posterior state. Is it the same as
in the analysis where the measurement happens before the Hadamard’s?
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(c) (5 points) Consider another continuation of part (a). We do not measure the
bottom n qubits at all, and proceed to measure the top n qubits only. Describe
the result of the measurement. (Hint. For a state ∑z|z〉A|φz〉B, measuring system
A will result in z with probability ‖|ψz〉‖2.)
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2. (Spectral theorem) Let U = (v1, . . . , vn) be a unitary matrix and each vi ∈ Cn.

(a) (5 points) Show that {v1, . . . , vn} form an orthonormal basis of Cn.
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(b) (5 points) Show that the eigenvalues of any unitary U are of the form e2πiθ for
some θ ∈ [0, 1).
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(c) (5 points) Show that the eigenvectors corresponding to distinct eigenvalues are
orthogonal. (N.B. You can also verify that for each distinct eigenvalue λ, the set
Sλ := {v : Uv = λv} is a subspace, which is called the λ-eigenspace.)
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3. (Simulate classical circuit) The function EQ : {0, 1}3 → {0, 1} determines whether its
three input bits are equal, namely

EQ(a, b, c) 7→
{

1 if a = b = c
0 otherwise .

(a) (6 points) Show how to implement the OR gate and the duplicate gate (DUP) in
a reversible way using Toffoli gate. (Note: we showed this for AND gate in class,
which you can use as a building block. You may also use ancilla bits initialized
to either 0 or 1.)

OR
a
b

a ∨ b
a
aDUP: a
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(b) (5 points) Show how to compute the function EQ using AND, OR, NOT, and
DUP gates.
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(c) (5 points) Show how to compute the function EQ reversibly using Toffoli gates.
You may use gates other than Toffoli gates provided you explain how to imple-
ment any such gates using Toffoli gates.
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(d) (4 points) Turn your reversible circuit into a quantum circuit that implements
the unitary UEQ : |x〉|y〉 7→ |x〉|EQ(x)⊕ y〉.
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4. (Square root of a unitary)

(a) (5 points) Let U be a unitary operation with eigenvalues ±1. Let P0 be the
projection onto the +1 eigenspace of U and let P1 be the projection onto the −1
eigenspace of U. Let V = P0 + iP1. Show that V2 = U.
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(b) (5 points) Give a circuit of 1- and 2-qubit gates and controlled-U gates with the
following behavior (where the first register is a single qubit):

|0〉|ψ〉 7→
{
|0〉|ψ〉 if U|ψ〉 = |ψ〉
|1〉|ψ〉 if U|ψ〉 = −|ψ〉 .

13



(c) (5 points) Give a circuit of 1- and 2-qubit gates and controlled-U gates that
implements V, and show that it has the desired behavior. Your circuit may use
ancilla qubits that begin and end in the |0〉 state.
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(d) (5 points) As an application, the square root of a unitary operation U is useful
to implement a controlled-controlled version of U:

CC−U : |a〉|b〉|ψ〉 7→ |a〉|b〉Ua·b|ψ〉 .

Namely U is applied to the target ψ iff. both control bits a = b = 1. Let V2 = U.
Prove the following circuit identity.

• • • •
• ≡ • •
U V V† V
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(e) (5 points (bonus)) Show how to implement V =
√

X in QISKIT. (Note: this gives
you a way to implement Toffoli following part (d).)
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(f) (5 points) Determine the behavior of the following quantum circuit by imple-
menting it (in IBM QISKIT or other tools of your choice).

• • • • T

• • T† T† S

H T† T T† T H
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5. (Errors in randomized algorithms) Suppose you want to write a computer program C
to compute a Boolean function f : {0, 1}n → {0, 1}, mapping n bits to 1 bit. If C is a
deterministic algorithm, then “C successfully computes f ” has a clear meaning that
that C(x) = f (x) for all inputs x ∈ {0, 1}n. But what if C is a probabilistic algorithm?

(a) (8 points) The best thing is if C is a zero-error algorithm with failure probability
p. Namely

• on every input x, the output of C(x) is either f (x) or ⊥ (denoting failure).
• on every input x we have Pr[C(x) =⊥] ≤ p (NB. the probability is only over

the internal randomness of C, not the random choice of x.).

i) If you have a zero-error algorithm C for f with failure probability 90%, show
how to convert it to a zero-error algorithm C′ with failure probability at most
2−500. The “slowdown” should only be a factor of a few thousand.

ii) Alternatively, show how to convert C to an algorithm C′′ for f which: (i)
always outputs the correct answer, meaning C′′(x) = f (x) for all x; (ii) has
expected running time only a few powers of 2 worse than that of C. (Hint:
look up the mean of a geometric random variable.)
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(b) (5 points) The second best thing is if C is a one-sided error algorithm for f , with
failure probability p. There are two kinds of such algorithms, “no-false-positives”
and “no-false-negatives”. For simplicity, let’s just consider “no false-negatives”
(the other case is symmetric);

• on every input x, the output C(x) is either 0 or 1;
• on every input x such that f (x) = 1, the output C(x) is also 1;
• on every input x such that f (x) = 0, we have Pr[C(x) = 1] ≤ p.

Show how to convert a no-false-negatives algorithm C for f with failure probabil-
ity 90% to another no-false-negatives algorithm C′ for f with failure probability
at most 2−500. The “slowdown” should only be a factor of a few thousand.
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(c) (5 points (bonus)) The third possibility (which is rare in practice) is if C is a
two-sided error algorithm for f , with failure probability p. Namely,

• on every input x, the output C(x) is either 0 or 1.
• on every input x, we have Pr[C(x) 6= f (x)] ≤ p.

If you have a two-sided error algorithm C for f with failure probability 40%,
show how to convert it to a two-sided error algorithm C′ for f with failure
probability at most 2−500. The “slowdown” should only be a factor of a few
dozen thousand. (Hint: look up the Chernoff bound.)
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