

S'20 CS410/510 Intro to quantum computing

Fang Song

Week 9

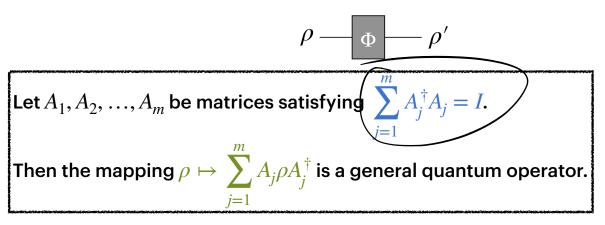
- Quantum error correction
- Quantum fault-tolerance

Credit: based on slides by Richard Cleve

Exercise

2. Let $|A\rangle$, $|B\rangle$ be as defined below. Show that $I=a\,|A\rangle\langle A\,|+b\,|B\rangle\langle B\,|$

Recall: quantum channels



- \bullet N.B. A_i need NOT be square matrices
- Also known as quantum channels

Examples of quantum channels

3. Partial trace
$$A_0 = I \otimes \langle 0 | = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}, A_1 = I \otimes \langle 1 | = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

• Check validity:
$$A_0^{\dagger}A_0 + A_1^{\dagger}A_1 = 1$$
 $\Rightarrow (!0) \otimes (!0)$

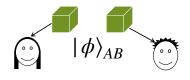
• Apply to
$$10\rangle\langle 0|\otimes |+\rangle\langle +|$$

$$A_{o}(10\rangle\langle 0|\otimes |+\chi+1)A_{o}^{\dagger}$$

$$\begin{aligned} & \sum A_i \int A_i^{\dagger} = |o \times o| \\ & = I \otimes \langle o| (|b \times o| \otimes | | + \times + 1) | I \otimes |o \rangle \\ & = |o \times o| \otimes \langle o| + \rangle \langle + 1 | I \otimes |o \rangle \\ & = |o \times o| \otimes \langle o| + \rangle \langle + 1 | o \rangle = \frac{1}{2} |o \times o| \\ & = |o \times o| \otimes |o \times o| \otimes |o \times o| \\ & = |o \times o| \otimes |o \times o| \otimes |o \times o| \end{aligned}$$

(A&B)(C&D) = A(&BD

Exercise



1. let Tr_R denote partial trace of subsystem B. Suppose Alice and Bob shares two qubits in state $|\phi\rangle_{AR}$.

Apply
$$Tr_{B}$$
 to $|\phi\rangle_{AB} = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$

$$\begin{cases} \{(\frac{1}{2}, |0\rangle), (\frac{1}{2}, |1\rangle)\} \end{cases} \xrightarrow{\frac{1}{2}} |0\times 0| + \frac{1}{2}|1\times 1| = I_{A}$$

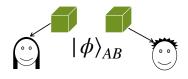
$$A = P_{AB} A_{0}^{\dagger} = \frac{1}{2}|0\times 0| + \frac{1}{2}|1\times 1| = I_{A}$$
Apply Tr_{B} to $|\phi\rangle_{AB} = \frac{1}{\sqrt{2}}(|01\rangle + |10\rangle)$

$$T_{V_{B}}(|1\phi\times\phi|) = I_{A}$$

$$P_{AB} = \frac{1}{2}(|01\times 0| + |01\times 0| + |10\times 0| + |10\times 1|)$$
And $P_{AB} = \frac{1}{2}(|1\times 0| + |10\times 0| + |10\times 1|)$
Is Alice able to tell the two cases on her side?
$$P_{AB} = \frac{1}{2}(|0\times 0| + |10\times 0| + |10\times 0| + |10\times 0|)$$

$$P_{AB} = \frac{1}{2}(|0\times 0| + |10\times 0| + |10\times 0| + |10\times 0|)$$
Is Alice able to tell the two cases on her side?

Exercise



2. let Tr_B denote partial trace of subsystem B. Suppose Alice and Bob shares two qubits in state $|\phi\rangle_{AB}$.

• Apply
$$Tr_B$$
 to $|\phi\rangle_{AB} = \frac{3}{5}|00\rangle + \frac{4}{5}|11\rangle$

• Apply
$$Tr_B$$
 to $|\phi\rangle_{AB} = \frac{4}{5}|00\rangle - \frac{3}{5}|11\rangle$

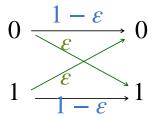
• Is Alice able to tell the two cases on her side?

Error correction codes

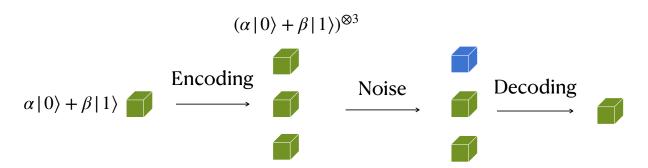
Classical error correcting codes (ECC)

Protecting data against noises during transmitting or storing

- ullet Binary symmetric channel: each bit flips w. probability arepsilon independently
 - A simple noise model, reality may be more complex and unpredictable



Quantum repetition code?



:(This would violate no-cloning ...

3-bit repetition code

Redundancy is our friend

• $E: b \mapsto bbb$; repete to encode

• $D: b_1b_2b_3 \mapsto maj(b_1, b_2, b_3)$; take majority to decode

$\ ^{\odot}$ Effective error probability reduces from ε to $3\varepsilon^2-2\varepsilon^3$

arepsilon	$3\varepsilon^2 - 2\varepsilon^3$	Error reduced by a factor of
0.1	0.009	11
0.01	0.0001	100
0.001	0.0000001	1000

3-qubit code for one *X*-error

•
$$|0\rangle \mapsto |0_L\rangle := |000\rangle, |1\rangle \mapsto |1_L\rangle := |111\rangle$$

•
$$\alpha |0\rangle + \beta |1\rangle \mapsto \alpha |000\rangle + \beta |111\rangle$$
 code word

$$\frac{\alpha|0\rangle + \beta|1\rangle}{\text{XOIQI}(2000) + \beta|1\rangle} \qquad \alpha|0\rangle + \beta|1\rangle$$

What if a quantum bit-flip error?

•
$$I \otimes I \otimes I$$
 $X \otimes I \otimes I$ $I \otimes X \otimes I$ $I \otimes I \otimes X$

3-qubit code for one *X*-error

Encoding Error Decoding
$$\alpha|0\rangle + \beta|1\rangle$$

$$|0\rangle$$

$$|0\rangle$$

$$|0\rangle$$

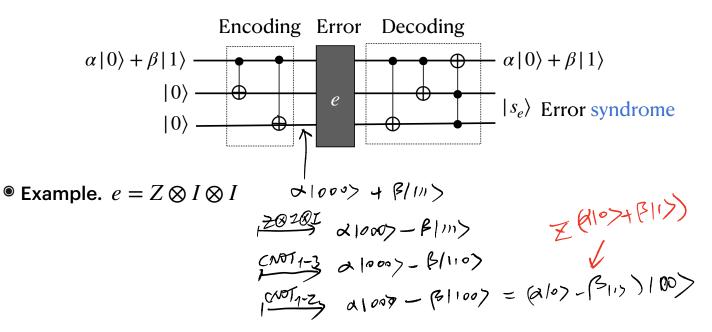
$$|0\rangle$$

$$|0\rangle$$

$$|1\rangle$$

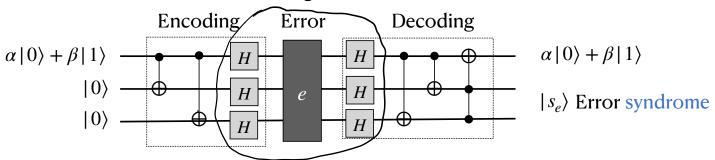
Error

Does it help with Z-error? phase this



3-qubit code for one Z-error

• Observation. HZH = X. Reducing Z-erro to X-error

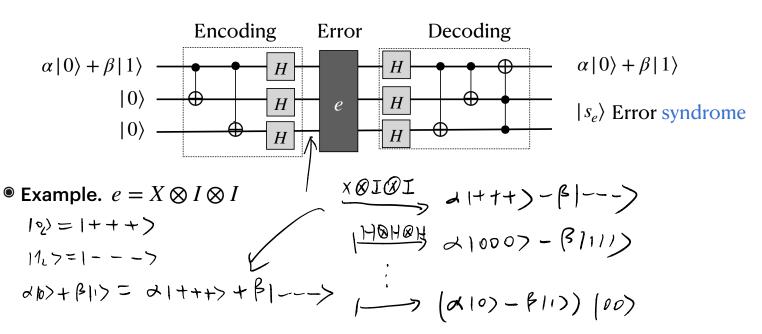


• Encoding
$$E. |0\rangle \mapsto |0_L\rangle := |+++\rangle, |1\rangle \mapsto |1_L\rangle := |---\rangle$$

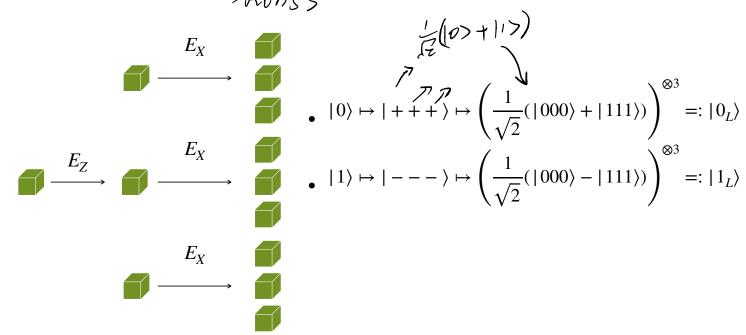
Error $I \otimes I \otimes I \quad X \otimes I \otimes I \quad I \otimes X \otimes I \quad I \otimes I \otimes X$

Error syndrome $|00\rangle$ $|11\rangle$ $|10\rangle$ $|01\rangle$

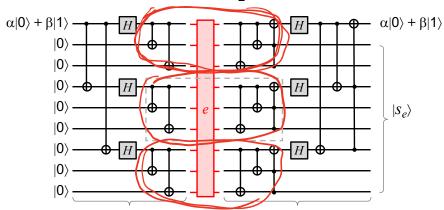
Does it help with X-error?



Shor's 9-qubit code



Shor's 9-qubit code



- Able to correct a single X or Z error
 - "Inner " part corrects any single-quit *X* error
 - "Inner " part corrects any single-quit X error
- Since Y = iXZ, single-quit Y-error can be corrected too

Arbitrary one-qubit errors

© Observation. Any one-qubit unitary U can be written as $U = \lambda_0 I + \lambda_1 X + \lambda_2 Y + \lambda_3 Z$ for some $\lambda_i \in \mathbb{C}$.

$$\alpha | 0 \rangle + \beta | 1 \rangle \stackrel{E}{\mapsto} \alpha | 0_{L} \rangle + \beta | 1 \rangle_{L} \stackrel{I \otimes U \otimes ... \otimes I}{\mapsto} (\widetilde{\psi})$$

$$(\alpha | 0 \rangle + \beta | 1 \rangle)(\lambda_{0} | s_{I} \rangle + \lambda_{1} | s_{X} \rangle + \lambda_{2} | S_{Y} \rangle + \lambda_{3} | S_{Z} \rangle)$$

- $^{\circ}$ Corollary. Shor's 9-qubit code protects against any one-qubit unitary error. In fact the error can be any one-qubit quantum channel Φ .
- More QECC: CSS codes & stabilizer codes
 - 5-qubit code: optimal for correcting single-qubit errors
 - Surface code: elegant theory and promising in realization

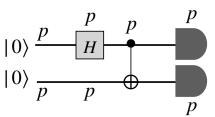
Fault-tolerant computing

Error is ubiquitous

QECC solves the problem of storing and transmitting quantum information.

But we want to do more: computation on them

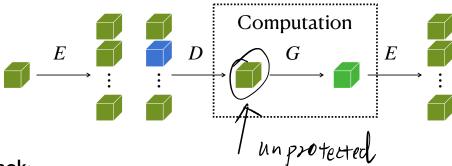
- Observation. Any "location" can "fail".
 - Gate, measurement, storage, prep, ...



- ullet Simple error model: each location fails with probability p
 - Circuit of size ℓ . Pr[no error] = $(1 \beta)^{\ell} \chi \qquad 1 \ell \qquad 0$

Attempt 1

● Enc — Dec — Compute — Enc

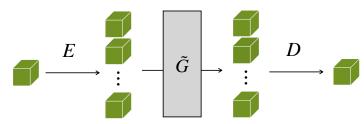


Drawback:

Attempt 2

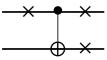
Computing on encoded data

Encoded gate



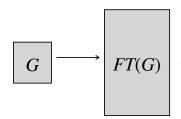
Challenges

- Non-perfect \tilde{G} : ok if not many
- Error propagation



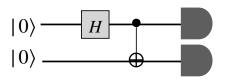
Fault-tolerant gadget

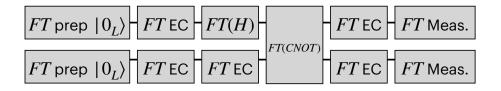
- When designed encoded gates, make sure not to introduce too many errors
 - FT gate,
 - FT state prep
 - FT measurement



Specific to the errorcorrecting code used

Putting it together: FT operations + Frequent FT error-correcting





Threshold theorem

Theorem. There is a fixed constant p_{th} such that a circuit of size T can be translated to a circuit of size $O(T \log T)$ that is robust against the error model with error $p \leq p_{th}$.

- \mathbf{P}_{th} depends heavily on the QECC
 - Steane code: $\sim 10^{-5}$
 - Surface code: $\sim 10^{-2}$
- Another key idea: concatenation

Quantum computational complexity

Encounters so far

Computability: can you solve it, in principle?

[Given program code, will this program terminate or loop indefinitely?] Uncomputable!

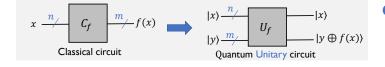
Church-Turing Thesis. A problem can be computed in any reasonable model of computation iff. it is computable by a Boolean circuit.

Complexity: can you solve it, under resource constraints?

[Can you factor a 1024-bit integer in 3 seconds?]

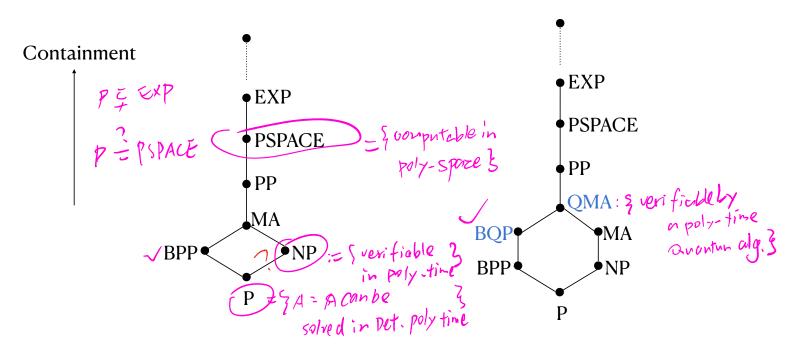
Extended Church-Turing Thesis. A function can be computed efficiently in any reasonable model of computation iff. it is efficiently computable by a Boolean circuit.

Quantum computer Disprove ECTT?



Corollary. BPP⊆BQP [More to come in future]

Landscape of complexity classes



Discussion: quantum party is on!?

What do you think about its description of quantum computing?

Think of a few local companies. Can you identify where quantum computers might help them?

Looking forward to your presentations!

Scratch