S20 CS410/510 Intro to
 quantum computing

Week 9

- Quantum error correction
- Quantum fault-tolerance

Fang Song

Credit: based on slides by Richard Cleve

Recall: quantum channels

Let $A_{1}, A_{2}, \ldots, A_{m}$ be matrices satisfying $\sum_{j=1}^{m} A_{j}^{\dagger} A_{j}=I$.
Then the mapping $\rho \mapsto \sum_{j=1}^{m} A_{j} \rho A_{j}^{\dagger}$ is a general quantum operator.

- N.B. A_{i} need NOT be square matrices

○ Also known as quantum channels

Examples of quantum channels

3. Partial trace $A_{0}=I \otimes\langle 0|=\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0\end{array}\right), A_{1}=I \otimes\langle 1|=\left(\begin{array}{llll}0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$

- Check validity:
- Apply to $|0\rangle\langle 0| \otimes|+\rangle\langle+|$
. Apply to $|\phi\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)$

Exercise

1. let Tr_{B} denote partial trace of subsystem B. Suppose Alice and Bob shares two qubits in state $|\phi\rangle_{A B}$.
. Apply Tr_{B} to $|\phi\rangle_{A B}=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)$
. Apply Tr_{B} to $|\phi\rangle_{A B}=\frac{1}{\sqrt{2}}(|01\rangle+|10\rangle)$

- Is Alice able to tell the two cases on her side?

Exercise

2. let $T r_{B}$ denote partial trace of subsystem B. Suppose Alice and Bob shares two qubits in state $|\phi\rangle_{A B}$.

- Apply $\operatorname{Tr}_{B} \operatorname{to}|\phi\rangle_{A B}=\frac{3}{5}|00\rangle+\frac{4}{5}|11\rangle$
- Apply $\operatorname{Tr}_{B} \operatorname{to}|\phi\rangle_{A B}=\frac{4}{5}|00\rangle-\frac{3}{5}|11\rangle$
- Is Alice able to tell the two cases on her side?

Error correction codes

Classical error correcting codes (ECC)

© Protecting data against noises during transmitting or storing

○ Binary symmetric channel: each bit flips w. probability ε independently

- A simple noise model, reality may be more complex and unpredictable

Quantum repetition code?

:(This would violate no-cloning ...

3-bit repetition code

- Redundancy is our friend
- $E: b \mapsto b b b$; repete to encode
- $D: b_{1} b_{2} b_{3} \mapsto \operatorname{maj}\left(b_{1}, b_{2}, b_{3}\right)$; take majority to decode
- Effective error probability reduces from ε to $3 \varepsilon^{2}-2 \varepsilon^{3}$

ε	$3 \varepsilon^{2}-2 \varepsilon^{3}$	Error reduced by a factor of
0.1	0.009	11
0.01	0.0001	100
0.001	0.0000001	1000

3-qubit code for one X-error

- Encoding E
- $|0\rangle \mapsto\left|0_{L}\right\rangle:=|000\rangle,|1\rangle \mapsto\left|1_{L}\right\rangle:=|111\rangle$
$\cdot \alpha|0\rangle+\beta|1\rangle \mapsto \alpha|000\rangle+\beta|111\rangle$

$\cdot I \otimes I \otimes I \quad X \otimes I \otimes I \quad I \otimes X \otimes I \quad I \otimes I \otimes X$

3-qubit code for one X-error

Error
$I \otimes I \otimes I \quad X \otimes I \otimes I \quad I \otimes X \otimes I \quad I \otimes I \otimes X$
Error syndrome $|00\rangle$
$|11\rangle$
10〉 $|01\rangle$

Does it help with Z-error?

© Example. $e=Z \otimes I \otimes I$

3-qubit code for one Z-error

○ Observation. $H Z H=X$. Reducing Z-erro to X-error

- Encoding $E .|0\rangle \mapsto\left|0_{L}\right\rangle:=|+++\rangle,|1\rangle \mapsto\left|1_{L}\right\rangle:=|---\rangle$

Error	$I \otimes I \otimes I$	$X \otimes I \otimes I$	$I \otimes X \otimes I$	$I \otimes I \otimes X$
Error syndrome	$\|00\rangle$	$\|11\rangle$	$\|10\rangle$	$\|01\rangle$

Does it help with X-error?

© Example. $e=X \otimes I \otimes I$

Shor's 9-qubit code

$$
\xrightarrow[\longrightarrow]{E_{Z}} \xrightarrow{E_{X}} \xrightarrow{E_{X}}
$$

Shor's 9-qubit code

- Able to correct a single X or Z error
- "Inner " part corrects any single-quit X error
- "Inner " part corrects any single-quit X error
© Since $Y=i X Z$, single-quit Y-error can be corrected too

Arbitrary one-qubit errors

- Observation. Any one-qubit unitary U can be written as

$$
\begin{aligned}
U= & \lambda_{0} I+\lambda_{1} X+ \\
\alpha|0\rangle+\beta|1\rangle & \stackrel{\lambda_{2} Y+\lambda_{3} Z \text { for some } \lambda_{i} \in \mathbb{C}}{\stackrel{E}{\mapsto}} \alpha\left|0_{L}\right\rangle+\beta|1\rangle_{L} \stackrel{I \otimes U \otimes \otimes . . \otimes I}{\mapsto}|\tilde{\psi}\rangle \\
& \stackrel{D}{\mapsto}(\alpha|0\rangle+\beta|1\rangle)\left(\lambda_{0}\left|s_{I}\right\rangle+\lambda_{1}\left|s_{X}\right\rangle+\lambda_{2}\left|S_{Y}\right\rangle+\lambda_{3}\left|S_{Z}\right\rangle\right)
\end{aligned}
$$

○ Corollary. Shor's 9-qubit code protects against any one-qubit unitary error. In fact the error can be any one-qubit quantum channel Φ.

○ More QECC: CSS codes \& stabilizer codes

- 5-qubit code: optimal for correcting single-qubit errors
- Surface code: elegant theory and promising in realization

Fault-tolerant computing

Error is ubiquitous

QECC solves the problem of storing and transmitting quantum information.
But we want to do more: computation on them

○ Observation. Any "location" can "fail".

- Gate, measurement, storage, prep, ...

- Simple error model: each location fails with probability p
- Circuit of size $\ell . \operatorname{Pr}[$ no error $]=$

Attempt 1

○ Enc - Dec - Compute - Enc

○ Drawback:

Attempt 2

- Computing on encoded data

Encoded gate

- Challenges
- Non-perfect \tilde{G} : ok if not many
- Error propagation

Fault-tolerant gadget

- When designed encoded gates, make sure not to introduce too many errors
- FT gate,
- FT state prep
- FT measurement

© Putting it together: FT operations + Frequent FT error-correcting

Threshold theorem

Theorem. There is a fixed constant $p_{t h}$ such that a circuit of size T can be translated to a circuit of size $O(T \log T)$ that is robust against the error model with error $p \leq p_{t h}$.

- $p_{t h}$ depends heavily on the QECC
- Steane code: $\sim 10^{-5}$
- Surface code: $\sim 10^{-2}$
\bigcirc Another key idea: concatenation

Quantum computational complexity

Encounters so far

- Computability: can you solve it, in principle?
[Given program code, will this program terminate or loop indefinitely?]

Uncomputable!

- Complexity: can you solve it, under resource constraints?
[Can you factor a 1024-bit integer in 3
seconds?]
Extended Church-Turing Thesis. A function can be computed efficiently in any reasonable model of computation iff. it is efficiently computable by a Boolean circuit.

Disprove ECTT?

Corollary. BPP \subseteq BQP [More to come in future]

Landscape of complexity classes

Discussion: quantum party is on!?

© What do you think about its description of quantum computing?

○ Think of a few local companies. Can you identify where quantum computers might help them?

Looking forward to your presentations!

