

05/22/2020

Week 8

- Mixed states, density matrices
- General quantum operations
- POVM

Fang Song

S'20 CS410/510

Intro to

quantum computing

Credit: based on slides by Richard Cleve

1. Let *I* be identity on *n* qubits. Show that $I = \sum |x\rangle \langle x|$. $\begin{aligned} & |o \times o| = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \\ & |1 \times 1| = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} + = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \\ & & |1 \times | \times | = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} - \chi^{+h} \end{aligned}$

2. Let $|A\rangle$, $|B\rangle$ be as defined below. Show that $I = a |A\rangle\langle A| + b |B\rangle\langle B|$ $a/AXA = \left(\frac{1}{\sqrt{a}} \sum_{x \in \Delta} 1x\right) \left(\frac{1}{\sqrt{a}} \sum_{x' \in \Delta} 2x'\right)$ • $A \subseteq \{0,1\}^n, B = \{0,1\}^n \setminus A$ • $A \subseteq \{0,1\}^{\circ}, B = \{0,1\}^{\circ}, B$ $b|BXB| = \sum_{\substack{b \\ b \\ x'\in B'}} |x \times x|$ $\alpha = |A|$

3. Let Z_f be as below. Show that $Z_f = I - 2 |A\rangle \langle A|$. What is $Z_f |A\rangle$? • $Z_f : |x\rangle \mapsto \begin{cases} -|x\rangle, & x \in A \\ |x\rangle, & x \notin A \end{cases}$ $Z_{\mathcal{L}} [A\rangle = (I - 2|A|A|) |A\rangle$ • $Z_f : |x\rangle \mapsto \begin{cases} -|x\rangle, & x \in A \\ |x\rangle, & x \notin A \end{cases}$ $Z_{\mathcal{L}} [A\rangle = (I - 2|A|A|) |A\rangle$ • $Z_f : |x\rangle \mapsto \begin{cases} -|x\rangle, & x \in A \\ |x\rangle, & x \notin A \end{cases}$ $Z_{\mathcal{L}} [A\rangle = (I - 2|A|A|) |A\rangle$ • $Z_f : |x\rangle \mapsto \begin{cases} -|x\rangle, & x \in A \\ |x\rangle, & x \notin A \end{cases}$ $Z_{\mathcal{L}} [A\rangle = (I - 2|A|A|) |A\rangle$ = $-|A\rangle = \frac{1}{2} |A\rangle - 2|A|A|A\rangle = \frac{1}{2} |A|^2$ 4. Let Z_0 be as below. Show that $Z_0 = I - 2|0^n\rangle \langle 0^n|$.

•
$$Z_0: |x\rangle \mapsto \begin{cases} -|x\rangle, & x = 0^n \\ |x\rangle, & x \neq 0^n \end{cases}$$

5. What is $H^{\otimes n}Z_0H^{\otimes n}$?

Review: Grover's algorithm

$$|A\rangle := \frac{1}{\sqrt{a}} \sum_{x \in A} |x\rangle, |B\rangle := \frac{1}{\sqrt{b}} \sum_{x \in B} |x\rangle$$

•
$$|h\rangle := H^{\otimes n} |0^n\rangle$$

• $|h\rangle^{\perp}$: orthogonal to $|h\rangle$ on span{ $|A\rangle, |B\rangle$ }

•
$$Z_f = I - 2 |A\rangle \langle A|$$
: reflection about $|B\rangle$

- $-HZ_0H = 2 |h\rangle\langle h| I$: reflection about $|h\rangle$
- $G = (-HZ_0H)Z_{f}$: rotation by 2θ

Quantum algorithms so far

	Problem	Deterministic	Randomized	Quantum	
	Deutsch	2	2	1	
	Deutsch-Josza	2 ⁿ /2	O(n)	1	
Partial	Simon	2 ⁿ /2	$\sqrt{2^n}$	$O(n^2)$	
function	Order-finding	$2^{O((\log N)^{1/3} (\log \log N)^{2/3})}$			
	Factoring N			$(\log N)^3$	
	(Kitaev/Shor)				
Total	Unstructured search	O(2)	<i>n</i>)	$\Theta(\sqrt{2^n})$	
function	(Grover)	52(2)		$\Theta(\gamma 2)$	

Quantum information theory

An coarse taxonomy

Quantum information science (QIS)

- Quantum computing (QC): making information useful
 - Algorithms, software, ...
- Quantum information (QI): making information available
 - Elementary tasks: create, store, transmit, ...

Basic communication scenario

1 Alice: information source

- 2 Communication channel (resource): can you get everything I say in class?
- ³ Bob: because of noise, get disturbed \hat{m}

Central questions

- O. What is information, mathematically?
 - Defining bit as unit of information
- 1. Assuming noiseless channel, how many bits needed to transmit m?
 - Shannon noiseless/source coding theorem: entropy
- 2. Assuming noisy channel, how many bits can be transmitted reliably?
 - Shannon noisy-channel coding theorem: channel capacity
 - Tool: error correcting code

ŵ

The new quantum player

S	Channel	с		Q	1. 2.	Noiseless channel Noisy channel
		1. Shannon	1.	Holevo's bound: # info. in qstates?		
	Classical	2. theory	2.	Capacity to transmit C data		
	•		1.	Schumacher's Thm: compress Q data		
	Quantum	*teleportation	2.	Quantum capacity		

The new quantum player

- New resource: entanglement
 - Teleportation, super dense coding
 - Violation of Bell's inequality: validating quantum mechanics
- New challenges (easy for classical information)
 - copying a quantum state?
 - distinguishing states?

Copy a quantum state?

No-cloning theorem

Theorem. There is no valid quantum operation that maps an arbitrary (unknown) state $|\psi
angle$ to $|\psi
angle|\psi
angle$.

Density matrix formalism

Another continent language

State vector formalism

- State: $|\psi\rangle \in \mathbb{C}^d$
- Unitary operation $U: |\psi\rangle \mapsto U |\psi\rangle$
- Measuring in computational basis

•
$$\sum_{x} \alpha_x |x\rangle$$
: "x" w.p. $|\alpha_x|^2$, p.s. $|x\rangle$

Density matrix formalism

- State: $\rho = |\psi\rangle\langle\psi|$ (density matrix) • Ex. $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle |\psi\rangle\langle \psi| = \left(\begin{pmatrix} |\alpha| \\ \alpha \beta^{*} & |\beta| \end{pmatrix} \right)$
- Unitary $U: \rho \mapsto U\rho U^{\dagger}$ $|\Psi\rangle \stackrel{\mathcal{U}}{\rightarrow} \mathcal{U}|\Psi\rangle, \quad (\mathcal{U}|\Psi\rangle) (\langle\Psi|\mathcal{U}^{\dagger}) = \mathcal{U}\rho \mathcal{U}^{\dagger}$ Measuring in computational basis

$$\rho = \sum_{x,x'} \alpha_x \alpha_{x'}^* |x\rangle \langle x'| : "x" \text{ w.p.}$$
$$\langle x | \rho | x \rangle, \text{ p.s. } |x\rangle \langle x|$$

2. Consider two qubits in state $|+\rangle |-\rangle$. Write down its density matrix.

$$P = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \otimes \begin{pmatrix} 1 \\ -1 \end{pmatrix} \qquad P = \begin{pmatrix} 1 \\ -1 \\ 1 \\ -1 \end{pmatrix} (1 - 1 - 1 - 1)$$
$$= \begin{pmatrix} 1 \\ -1 \\ 1 \\ -1 \end{pmatrix} \qquad = \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix} \qquad = \begin{pmatrix} 1 \\ -1 \\ -1 \\ -1 \end{pmatrix} \qquad = \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix} \qquad = \begin{pmatrix} 1 \\ -1 \\ -1 \\ -1 \end{pmatrix} \qquad = \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix} \qquad = \begin{pmatrix} 1 \\ -1 \\ -1 \\ -1 \end{pmatrix} \qquad = \begin{pmatrix} 1 \\ -1$$

Pure states vs. mixed states

- ullet Alice flips a coin, prepare |0
 angle or |1
 angle accordingly.
- Bob receives the register (Alice's coin unknown). How to describe his state?
 - $\{(\frac{1}{2}, |0\rangle), (\frac{1}{2}, |1\rangle)\}$ no compact representation as state vectors
 - Density matrix representation: $\rho = \frac{1}{2} |0\rangle \langle 0| + \frac{1}{2} |1\rangle \langle 1|$
- This is called a mixed state. In contrast, $|\psi\rangle$ is called a pure state.

1. Alice flips a coin and prepares a qubit as follows. She then sends the qubit (but not the coin) to Bob. How to describe Bob's state?

$$\bigoplus_{i=1}^{\infty} \bigoplus_{j=1}^{\infty} \{ (\frac{1}{2}, i+j), (\frac{1}{2}, i-j) \}$$

$$HEADS: |+\rangle$$

$$TAILS: |-\rangle$$

2. Write down the density matrix explicitly and compare with the previous slide.

$$P = \frac{1}{2} |+X+| + \frac{1}{2} |-X-| \qquad P = \frac{1}{2} |0X_0| + \frac{1}{2} |1X_1|$$

= $\frac{1}{2} \begin{pmatrix} 0 \\ 0 \end{pmatrix}_{2\times 2} \qquad P^a = \frac{1}{2} \begin{pmatrix} 0 \\ 0 \end{pmatrix}_{2\times 2} \qquad = \frac{1}{2} \begin{pmatrix} 0 \\ 0 \end{pmatrix}_{2\times 2}$

General mixed states

• Mixed state = a probability distribution (mixture) over pure states

$$\{(p_i, |\psi_i\rangle) : i = 1, \dots, k\}; \rho = \sum_i p_i |\psi_i\rangle\langle\psi_i|$$

Properties of density matrices

• $tr(\rho) = 1$

p is positive semi-definite, i.e., $\langle \psi | \rho | \psi \rangle \ge 0$.

Operations on mixed states $\underbrace{\{(p_i, | \psi_i \rangle)\}}_{i \in \mathcal{I}} P = \underbrace{\Xi_i}_{i} P_{\mathcal{I}} (\psi_i \times \psi_i)$ • Unitary $U: \rho \mapsto U\rho U^{\dagger}$ $\mathcal{U} | \mathcal{H}_i \times \mathcal{H}_i | \mathcal{U}^{\dagger}$ $= \Sigma_{i} p_{i} u | \psi_{i} \chi \psi_{i} | u^{\dagger}$ $= \mathcal{U} \left(\Sigma_{i} \mathcal{P}_{i} \right) \mathcal{Y}_{i} (\mathcal{Y}_{i}) \mathcal{U}^{\dagger}$ • Measurement: "x" with prob. $\langle x | \rho | x \rangle$ KPU+ ti: ithbin: x. Px -> Question: k pick ithbin (Px) k pick x from ithbin (Px) k pick x from ithbin (Px) k pick x from ithbin (Px) then $p_{T} \times J = \sum_{i} p_{i} P_{r} T \times [i]$ $\Rightarrow p_{r} \ Lonears. \times J = \sum_{i} p_{i} (\sum_{i} p_{i}) + i \times (\times)$ $= \langle \times | (\sum_{i} p_{i}) + i \times (\times)$

General quantum operations

- N.B. A_i need NOT be square matrices
- Also known as quantum channels
 - admissible operations, completely positive trace preserving maps

Examples of quantum channels

- 1. Unitary $U^{\dagger}U = I: \rho \mapsto U\rho U^{\dagger}$
- 2. Decoherence channel $A_0 = \overline{|0\rangle}\langle 0|, A_q = |1\rangle\langle 1|$
 - Check validity: $A_{\sigma}^{\dagger}A_{\sigma} + A_{1}^{\dagger}A_{l} = 1$

$$(10 \times 0)(10 \times 01) + (11 \times 11)(11 \times 11) = 1$$

$$| \phi \times 0| = \alpha | 0 \rangle + \beta | 1 \rangle \qquad \rho \stackrel{\overline{\Psi}}{=} \sum_{i} A_i \rho \stackrel{A_i}{=} \sum_{i} A_i (\rho \stackrel{A_i}{=}) \qquad A_0(\rho \stackrel{P_i}{=}) \stackrel{I \times 10}{\times} A_0^{\dagger}$$

$$P = \begin{pmatrix} |\alpha|^2 & |\alpha|^2 \\ |\beta|^2 \end{pmatrix} = |\alpha|^2 |0\times| + \alpha \beta^* |0\times| + \alpha^* \beta^* |0\times| + \alpha^* \beta^* |1\times| + \alpha^* \beta^* |1\times| + \beta^* \beta^* |1\times|$$

Examples of quantum channels

- **3.** Partial trace $A_0 = I \otimes \langle 0 | = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}, A_1 = I \otimes \langle 1 | = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$
 - Check validity:

• Apply to $|0\rangle\langle 0|\otimes|+\rangle\langle+|$

• Apply to
$$|\phi\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$

1. let Tr_B denote partial trace of subsystem B. Suppose Alice and Bob shares two qubits in state $|\phi\rangle_{AB}$.

• Apply
$$Tr_B$$
 to $|\phi\rangle_{AB} = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$

• Apply
$$Tr_B$$
 to $|\phi\rangle_{AB} = \frac{1}{\sqrt{2}}(|01\rangle + |10\rangle)$

• Is Alice able to tell the two cases on her side?

2. let Tr_B denote partial trace of subsystem *B*. Suppose Alice and Bob shares two qubits in state $|\phi\rangle_{AB}$.

• Apply
$$Tr_B$$
 to $|\phi\rangle_{AB} = \frac{3}{5}|00\rangle + \frac{4}{5}|11\rangle$

• Apply
$$Tr_B$$
 to $|\phi\rangle_{AB} = \frac{4}{5}|00\rangle - \frac{3}{5}|11\rangle$

• Is Alice able to tell the two cases on her side?

General measurement

• A measurement is described by a collection of matrices $M = \{M_a : a \in \Gamma\}$ with possible outcomes Γ satisfying $\sum M_a^{\dagger} M_a = I$.

$$\rho - M - \frac{\text{outcome}}{a} \frac{\text{probability}}{Tr(M_a \rho M_a^{\dagger})} \xrightarrow{M_a \rho M_a^{\dagger}}_{Tr(M_a \rho M_a^{\dagger})}$$

• Example. $M_0 = |0\rangle\langle 0| \otimes I, M_1 = |1\rangle\langle 1| \otimes I, \Gamma = \{0,1\}.$
• Measure $|\psi\rangle = |+\rangle |0\rangle$ $\frac{\text{outcome}}{0} \frac{\text{probability}}{1}$ posterior state
 $|\psi\chi\psi| = |+\chi+| \otimes |0\chi_0|$ 0 $\frac{1}{2}$
 $M_{\circ}(|+\chi+|\otimes|0\chi_0|) M_{\circ}^{\dagger}$ 1 $\frac{1}{2}$
 $M_{\circ}(|+\chi+|\otimes|0\chi_0|) M_{\circ}^{\dagger} = \frac{1}{2} |0\chi_0| \otimes |0\chi_0| = (\frac{1}{2} O_{\circ \circ})$

 $a \in \Gamma$

Projective measurement & POVM

- Projective (von Neumann) measurement: M_a projections ($M_a^2 = M_a$).
 - Complete projective measurement $M_a = |\psi_a\rangle\langle\psi_a|$ and $\{|\psi_a\rangle\}$ an orthonormal basis
 - \equiv measurement under basis { $|\psi_a\rangle$ }
- Pr[a] = $Tr(M_a^{\dagger}\rho M_a^{\dagger}) = Tr((M_a^{\dagger}M_a)\rho)$ $T_r(AB) = Tr(BA)$
 - Suffice to specify POVM elements $\{E_a = M_a^{\dagger} M_a : a \in \Gamma\}$

Logistics

• HW6 due next Sunday

- Project
 - Week10 office hour: slots available
 - Presentations
 - Pre-record your talk by zoom, powerpoint, ... Keep it 20 25 mins
 - Live Q&A in class
 - Participate in all talks and fill out peer-evaluation

Discussion on Google's experiment

Scratch