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Exercise
1. Let  be identity on  qubits. Show that .I n I = ∑

x∈{0,1}n

|x⟩⟨x |
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•  

• , 

A ⊆ {0,1}n, B = {0,1}n\A

|A⟩ := 1
a ∑

x∈A
|x⟩ |B⟩ := 1

b ∑
x∈B

|x⟩

2. Let  be as defined below. Show that  |A⟩, |B⟩ I = a |A⟩⟨A | + b |B⟩⟨B |
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Exercise
3. Let  be as below. Show that . What is ?Zf Zf = I − 2 |A⟩⟨A | Zf |A⟩
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• Zf : |x⟩ ↦ {− |x⟩, x ∈ A
|x⟩, x ∉ A

4. Let  be as below. Show that .Z0 Z0 = I − 2 |0n⟩⟨0n |

• Z0 : |x⟩ ↦ {− |x⟩, x = 0n

|x⟩, x ≠ 0n

5. What is ?H⊗nZ0H⊗n
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Review: Grover’s algorithm
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• ,  

•  

• : orthogonal to  on   

|A⟩ := 1
a ∑

x∈A
|x⟩ |B⟩ := 1

b ∑
x∈B

|x⟩

|h⟩ := H⊗n |0n⟩
|h⟩⊥ |h⟩ span{ |A⟩, |B⟩}

Zf −Z0H⊗n H⊗n

Grover Iteration G
|h⟩

|A⟩

|h⟩
|B⟩

|h⟩⊥ G |h⟩

Gk |h⟩

θ
2θ

• : re!ection about  

• : re!ection about  

• : rotation by 

Zf = I − 2 |A⟩⟨A | |B⟩

−HZ0H = 2 |h⟩⟨h | − I |h⟩
G = (−HZ0H)Zf 2θ



Quantum algorithms so far

Problem Deterministic Randomized Quantum

Deutsch
Deutsch-Josza

Simon
Order-"nding 

Factoring N 
(Kitaev/Shor)  

Unstructured search 
(Grover) 

2O((log N)1/3(log log N)2/3) (log N)3

2 2 1
2n/2

2n
O(n) 1

O(n2)2n/2

oracle 
model

oracle 
model

Partial  
function

Total  
function Ω(2n) Θ( 2n)



Quantum information theory
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An coarse taxonomy
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QIS

QC QI

Quantum information science (QIS) 

๏ Quantum computing (QC): making 
information useful 

• Algorithms, software, …  

๏ Quantum information (QI): making 
information available 

• Elementary tasks: create, store, transmit, …



Basic communication scenario
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Goal: convey information from Alice to Bob

1 Alice: information source

2 Communication channel (resource): can you get everything I say in class?

3 Bob: because of noise, get disturbed m̂

m
Communication  

Channel m̂

Alice Bob

1

2

3



Central questions

9

m
Communication  

Channel m̂

Alice Bob

0. What is information, mathematically?  

• De"ning bit as unit of information  

1. Assuming noiseless channel, how many bits needed to transmit ? 

• Shannon noiseless/source coding theorem: entropy  
2. Assuming noisy channel, how many bits can be transmitted reliably? 

• Shannon noisy-channel coding theorem: channel capacity 
• Tool: error correcting code 

m



The new quantum player
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m
Communication  

Channel m̂

Alice Bob

C Q

Classical

Quantum

Source
Channel

1.   
2.

Shannon 
theory

*teleportation

1. Holevo’s bound: # info. in qstates? 
2. Capacity to transmit C data
1. Schumacher’s Thm: compress Q data 
2. Quantum capacity

1. Noiseless channel 
2. Noisy channel

Quantum data  
(source)

Quantum channel 



The new quantum player
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m
Communication  

Channel m̂

Alice Bob

๏ New resource: entanglement 

• Teleportation, super dense coding  
• Violation of Bell’s inequality: validating quantum mechanics 

๏ New challenges (easy for classical information) 

• copying a quantum state? 
• distinguishing states? 



Copy a quantum state?

๏ How about CNOT?

12

?

|ψ⟩

|0⟩

|ψ⟩

|ψ⟩

⊕

•  

•  

•

|0⟩ |0⟩ ↦ |0⟩ |0⟩
|1⟩ |0⟩ ↦ |1⟩ |1⟩
| + ⟩ |0⟩ ↦ |0⟩ |0⟩ + |1⟩ |1⟩ ≠ | + ⟩ | + ⟩
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No-cloning theorem
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•  

•
|ψ⟩ |0⟩ |0⟩ ↦ |ψ⟩ |ψ⟩ |g⟩
|ψ′ ⟩ |0⟩ |0⟩ ↦ |ψ′ ⟩ |ψ′ ⟩ |g′ ⟩

|0⟩ |ψ⟩
U

|ψ⟩

|0⟩

|ψ⟩

|g⟩๏ Proof. (Linearity) Consider two states  and  |ψ⟩ |ψ′ ⟩

Theorem. There is no valid quantum operation that 
maps an arbitrary (unknown) state  to . |ψ⟩ |ψ⟩ |ψ⟩

 preserves inner product U
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Density matrix formalism
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Another continent language
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State vector formalism 

๏ State:  

๏ Unitary operation  
๏ Measuring in computational basis 

• : “ ” w.p. , p.s. 

|ψ⟩ ∈ ℂd

U : |ψ⟩ ↦ U |ψ⟩

∑
x

αx |x⟩ x |αx |2 |x⟩

Density matrix formalism 

๏ State: (density matrix) 

• Ex.  
๏ Unitary  

๏ Measuring in computational basis 

• : “ ” w.p. 

, p.s. 

ρ = |ψ⟩⟨ψ |

|ψ⟩ = α |0⟩ + β |1⟩
U : ρ ↦ UρU†

ρ = ∑
x,x′ 

αxα*x′ 

|x⟩⟨x′ | x

⟨x |ρ |x⟩ |x⟩⟨x |
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Exercise
1. Analyze the circuit below under both formalisms.
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2. Consider two qubits in state . Write down its density matrix. | + ⟩ | − ⟩

X|ψ⟩ = α |0⟩ + β |1⟩ 0 121210 4 1 8 10 11 12711 01110714
tix tix
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Pure states vs. mixed states 

๏ Alice flips a coin, prepare  or  accordingly.  
๏ Bob receives the register (Alice’s coin unknown). How to describe his state? 

•  no compact representation as state vectors 

• Density matrix representation:  

๏ This is called a mixed state. In contrast,  is called a pure state. 

|0⟩ |1⟩

{( 1
2 , |0⟩), ( 1

2 , |1⟩)}

ρ = 1
2 |0⟩⟨0 | + 1

2 |1⟩⟨1 |

|ψ⟩

17



Exercise
1. Alice flips a coin and prepares a qubit as follows. She then sends the qubit (but 
not the coin) to Bob. How to describe Bob’s state?

18

2. Write down the density matrix explicitly and compare with the previous slide. 

 HEADS: | + ⟩
TAILS: | − ⟩
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General mixed states
๏ Mixed state = a probability distribution (mixture) over pure states  

• :  

๏ Properties of density matrices  

•  

•  is pure i#.  (Think of examples in previous slides) 

•  is positive semi-de"nite, i.e., . 

{(pi, |ψi⟩) : i = 1,…, k} ρ = ∑
i

pi |ψi⟩⟨ψi |

tr(ρ) = 1

ρ tr(ρ2) = 1

ρ ⟨ψ |ρ |ψ⟩ ≥ 0

19
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Operations on mixed states
๏ Unitary  

๏ Measurement: “ ” with prob. 

U : ρ ↦ UρU†

x ⟨x |ρ |x⟩
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General quantum operations

๏ N.B.  need NOT be square matrices  
๏ Also known as quantum channels 

• admissible operations, completely positive trace preserving maps

Ai

21

Let  be matrices satisfying .  

Then the mapping  is a general quantum operator. 

A1, A2, …, Am

m

∑
j=1

A†
j Aj = I

ρ ↦
m

∑
j=1

AjρA†
j

Φρ ρ′ 



Examples of quantum channels 
1. Unitary :  

2. Decoherence channel  

• Check validity:  

• Apply to  

• Compare to measurement: 

U†U = I ρ ↦ UρU†

A0 = |0⟩⟨0 | , A0 = |1⟩⟨1 |

|ψ⟩ = α |0⟩ + β |1⟩

22
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Examples of quantum channels 

3. Partial trace  

• Check validity:  

• Apply to  

• Apply to  

A0 = I ⊗ ⟨0 | = (1 0 0 0
0 0 1 0), A1 = I ⊗ ⟨1 | = (0 1 0 0

0 0 0 1)

|0⟩⟨0 | ⊗ | + ⟩⟨ + |

|ϕ⟩ = 1
2

( |00⟩ + |11⟩)

23



Exercise

1. let  denote partial trace of subsystem . Suppose Alice and Bob shares two qubits in 
state .  

• Apply  to  

• Apply  to  

• Is Alice able to tell the two cases on her side? 

TrB B
|ϕ⟩AB

TrB |ϕ⟩AB = 1
2

( |00⟩ + |11⟩)

TrB |ϕ⟩AB = 1
2

( |01⟩ + |10⟩)

24
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Exercise

2. let  denote partial trace of subsystem . Suppose Alice and Bob shares two 
qubits in state .  

• Apply  to  

• Apply  to  

• Is Alice able to tell the two cases on her side? 

TrB B
|ϕ⟩AB

TrB |ϕ⟩AB = 3
5 |00⟩ + 4

5 |11⟩

TrB |ϕ⟩AB = 4
5 |00⟩ − 3

5 |11⟩

25

|ϕ⟩AB



General measurement
๏ A measurement is described by a collection of matrices  with 

possible outcomes  satisfying . 
M = {Ma : a ∈ Γ}

Γ ∑
a∈Γ

M†
aMa = I

26

๏ Example. . 

• Measure 

M0 = |0⟩⟨0 | ⊗ I, M1 = |1⟩⟨1 | ⊗ I, Γ = {0,1}
|ψ⟩ = | + ⟩ |0⟩

Mρ outcome probability posterior state

Tr(MaρM†
a)a MaρM†

a

Tr(MaρM†
a)

outcome probability posterior state

O

O
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Projective measurement & POVM
๏ Projective (von Neumann) measurement:  projections ( ). 

• Complete projective measurement and  an orthonormal basis 

•  measurement under basis 

Ma M2
a = Ma

Ma = |ψa⟩⟨ψa | { |ψa⟩}
≡ { |ψa⟩}

27

๏ Positive-operator-valued measurement (POVM) measurement 

•  

• Su$ce to specify POVM elements

Pr[a] = Tr(MaρM†
a) = Tr((M†

aMa)ρ)
{Ea = M†

aMa : a ∈ Γ}

M Ea
Tr AB Tr BA



Logistics
๏ HW6 due next Sunday 

๏ Project 

• Week10 o$ce hour: slots available  
• Presentations  

• Pre-record your talk by zoom, powerpoint, ... Keep it 20 - 25 mins   
• Live Q&A in class 
• Participate in all talks and "ll out peer-evaluation 

28



Discussion on Google’s experiment
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Scratch


