S20 CS410/510 Intro to

 quantum computing
Week 8

- Mixed states, density matrices
- General quantum operations
- POVM

Fang Song

Exercise

1. Let I be identity on n quits. Show that $I=\sum_{x \in\{0,1\}^{n}}|x\rangle\langle x|$. ${ }_{\mathrm{x} \text { th }} \quad 10 \times 0 \left\lvert\,=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)\right.$

$$
\left.\begin{array}{ll}
10 \times 0 \left\lvert\,=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\right. \\
\|x\|=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
\end{array} x_{1}^{1} \begin{array}{l}
1 \\
0
\end{array} 1\right) \quad \left\lvert\, \times\{0,1\}^{n} \quad\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)-x^{+h}\right.
$$

2. Let $|A\rangle,|B\rangle$ be as defined below. Show that $I=a|A\rangle\langle A|+b|B\rangle\langle B|$

$$
\begin{aligned}
& \text { - } A \subseteq\{0,1\}^{n}, B=\{0,1\}^{n} \backslash A \\
& a|A X A|=\left(\frac{1}{\sqrt{a}} \sum_{x \in A}(x)\right)\left(\frac{1}{\sqrt{a}} \sum_{x^{\prime}}\left\langle x^{\prime}\right|\right) \\
& \text { - }|A\rangle:=\frac{1}{\sqrt{a}} \sum_{x \in A}|x\rangle,|B\rangle:=\frac{1}{\sqrt{b}} \sum_{x \in B}|x\rangle+=\left\{\frac{1}{a} \sum_{\substack{x \in A \\
x^{\prime} \in A}}\left|x \times x^{\prime}\right|\right. \\
& a=|A| \\
& b|B \times B|=\sum^{\frac{\pi}{b}} \sum_{\substack{x \in B \\
x^{\prime} \in B^{\prime}}}^{x^{\prime} \in A}+
\end{aligned}
$$

Exercise
3. Let Z_{f} be as below. Show that $Z_{f}=I-2|A\rangle\langle A|$. What is $Z_{f}|A\rangle$?

- $Z_{f}:|x\rangle \mapsto\left\{\begin{array}{cc}-|x\rangle, & x \in A \\ |x\rangle, & x \notin A\end{array}\right.$

$$
\begin{aligned}
z_{f}|A\rangle & =(I-2|A X A|)|A\rangle \\
|B\rangle & =|A\rangle-2 A \times A|A\rangle \\
& =-|A\rangle \frac{1}{1}
\end{aligned}
$$

4. Let Z_{0} be as below. Show that $Z_{0}=I-2\left|0^{n}\right\rangle\left\langle 0^{n}\right|$.

- $Z_{0}:|x\rangle \mapsto\left\{\begin{array}{cc}-|x\rangle, & x=0^{n} \\ |x\rangle, & x \neq 0^{n}\end{array}\right.$

5. What is $H^{\otimes n} Z_{0} H^{\otimes n}$?

Review: Grover's algorithm

Grover Iteration G

- $|A\rangle:=\frac{1}{\sqrt{a}} \sum_{x \in A}|x\rangle,|B\rangle:=\frac{1}{\sqrt{b}} \sum_{x \in B}|x\rangle$
- $|h\rangle:=H^{\otimes n}\left|0^{n}\right\rangle$
- $|h\rangle^{\perp}$: orthogonal to $|h\rangle$ on $\operatorname{span}\{|A\rangle,|B\rangle\}$
- $Z_{f}=I-2|A\rangle\langle A|$: reflection about $|B\rangle$
- $-H Z_{0} H=2|h\rangle\langle h|-I$: reflection about $|h\rangle$
- $G=\left(-H Z_{0} H\right) Z_{f}$ rotation by 2θ

Quantum algorithms so far

Partial function	Problem	Deterministic	Randomized	Quantum	oracle model
	Deutsch	2	2	1	
	Deutsch-Josza	$2^{n} / 2$	$O(n)$	1	
	Simon	$2^{n} / 2$	$\sqrt{2^{n}}$	$O\left(n^{2}\right)$	
	Order-finding Factoring N (Kitaev/Shor)	$2^{O\left((\log N)^{1 / 3}(\log \log N)^{2 / 3}\right)}$		$(\log N)^{3}$	$\text { \| } \begin{aligned} & \text { oracle } \\ & \text { model } \end{aligned}$
Total function	Unstructured search (Grover)	$\Omega\left(2^{n}\right)$		$\Theta\left(\sqrt{2^{n}}\right)$	

Quantum information theory

An coarse taxonomy

Quantum information science (QIS)
© Quantum computing (QC): making information useful

- Algorithms, software, ...
© Quantum information (QI): making information available

- Elementary tasks: create, store, transmit, ...

Basic communication scenario

Goal: convey information from Alice to Bob

(1) Alice: information source
2. Communication channel (resource): can you get everything I say in class?
(3) Bob: because of noise, get disturbed \hat{m}

Central questions

0 . What is information, mathematically?

- Defining bit as unit of information

1. Assuming noiseless channel, how many bits needed to transmit m ?

- Shannon noiseless/source coding theorem: entropy

2. Assuming noisy channel, how many bits can be transmitted reliably?

- Shannon noisy-channel coding theorem: channel capacity
- Tool: error correcting code

The new quantum player

Channel Source	C	Q		Noiseless channel Noisy channel
Classical	1. Shannon 2. theory	1. Holevo's bound: \# info. in qstates? 2. Capacity to transmit C data		
Quantum	*teleportation	1. Schumacher's Thm: compress Q data 2. Quantum capacity		

The new quantum player

\bigcirc New resource: entanglement

- Teleportation, super dense coding
- Violation of Bell's inequality: validating quantum mechanics

○ New challenges (easy for classical information)

- copying a quantum state?
- distinguishing states?

Copy a quantum state?

○ How about CNOT?

- $|0\rangle|0\rangle \mapsto|0\rangle|0\rangle$
- $|1\rangle|0\rangle \mapsto|1\rangle|1\rangle$
$\cdot|+\rangle|0\rangle \mapsto|0\rangle|0\rangle+|1\rangle|1\rangle \neq|+\rangle|+\rangle$

$$
(|0\rangle+\mid 1))|0\rangle=|00\rangle+|10\rangle \xrightarrow{\text { (NOT }}|00\rangle+|11\rangle
$$

No-cloning theorem
Theorem. There is no valid quantum operation that maps an arbitrary (unknown) state $|\psi\rangle$ to $|\psi\rangle|\psi\rangle$.

Density matrix formalism

Another continent language

State vector formalism

- State: $|\psi\rangle \in \mathbb{C}^{d}$
© Unitary operation $U:|\psi\rangle \mapsto U|\psi\rangle$
○ Measuring in computational basis
- $\sum_{x} \alpha_{x}|x\rangle$: " x " w.p. $\left|\alpha_{x}\right|^{2}$, p.s. $|x\rangle$

Density matrix formalism

- State: $\rho=|\psi\rangle\langle\psi|$ (density matrix)
- Ex. $|\psi\rangle=\alpha|0\rangle+\beta|1\rangle|\psi\rangle\langle\psi|=\left(\begin{array}{cc}\left.\alpha\right|^{2} & \alpha^{*} \beta \\ \alpha \beta^{*} & \mid \beta^{2}\end{array}\right)$
- Unitary $U: \rho \mapsto U \rho U^{\dagger}$
$|\psi\rangle \stackrel{u}{\mapsto} u|\psi\rangle, \quad\left(\frac{(u|\psi\rangle)(\langle\psi|}{\rho} u^{+}\right)=u \rho u^{+}$
\bigcirc Measuring in computational basis

$$
\begin{aligned}
& \rho=\sum_{x, x^{\prime}} \alpha_{x} \alpha_{x^{\prime}}^{*}|x\rangle\left\langle x^{\prime}\right|: \text { " } x \text { " w.p. } \\
& \langle x| \rho|x\rangle \text {, p.s. }|x\rangle\langle x|
\end{aligned}
$$

Exercise

1. Analyze the circuit below under both formalisms.

$$
\begin{aligned}
& |\psi\rangle=\alpha|0\rangle+\beta|1\rangle-X \\
& \downarrow x \\
& \alpha|1\rangle+\beta|0\rangle \\
& \downarrow \mu \\
& 0 \text { wp. }|\beta|^{2} \quad|0\rangle \\
& \left.\left.\rho=|\alpha|^{2}|0 \times 0|+\alpha \beta^{*}|0 \times 1|+\alpha^{*} \beta|1 \times 0|+\mid \beta\right)^{2}| | x \mid\right) \\
& \begin{array}{l}
\downarrow x \\
\times \rho x^{+}=|\alpha|^{2} \times(10 \times \underbrace{001) X^{+}}+\cdots \cdot
\end{array} \\
& \mu \rho^{\prime}=|\alpha|^{2}| | x| |+\cdots+\cdots \\
& \text { " } \left.1 \text { " wp. }<1\left|P^{\prime}\right| 1\right\rangle=|\alpha|^{2} \quad|x X x|
\end{aligned}
$$

2. Consider two quits in state $|+\rangle|-\rangle$. Write down its density matrix.

Pure states vs. mixed states

- Alice flips a coin, prepare $|0\rangle$ or $|1\rangle$ accordingly.
- Bob receives the register (Alice's coin unknown). How to describe his state?
- $\left\{\left(\frac{1}{2},|0\rangle\right),\left(\frac{1}{2},|1\rangle\right)\right\}$ no compact representation as state vectors
- Density matrix representation: $\rho=\frac{1}{2}|0\rangle\langle 0|+\frac{1}{2}|1\rangle\langle 1|$
- This is called a mixed state. In contrast, $|\psi\rangle$ is called a pure state.

Exercise

1. Alice flips a coin and prepares a quit as follows. She then sends the quit (but not the coin) to Bob. How to describe Bob's state?
(\qquad

$$
\left\{\left(\frac{1}{2},|+\rangle\right),\left(\frac{1}{2}, \mid->\right)\right\}
$$

HEADS: $|+\rangle$
TAILS: $|-\rangle$
2. Write down the density matrix explicitly and compare with the previous slide.

$$
\begin{array}{rlrl}
P & =\frac{1}{2} \left\lvert\,+x+1+\frac{1}{2} 1-x-1\right. & P & =\frac{1}{2}|0 \times 0|+\frac{1}{2}\left|1 x_{1}\right| \\
& =\frac{1}{2}\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right)_{2 \times 2} \quad P^{2}=\frac{1}{4}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) & =\frac{1}{2}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)_{2 \times 2}
\end{array}
$$

General mixed states

- Mixed state $=$ a probability distribution (mixture) over pure states
- $\left\{\left(p_{i},\left|\psi_{i}\right\rangle\right): i=1, \ldots, k\right\}: \rho=\sum_{i} p_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|$
- Properties of density matrices
- $\operatorname{tr}(\rho)=1$
- ρ is pure iff. $\operatorname{tr}\left(\rho^{2}\right)=1$ (Think of examples in previous slides)
$\begin{aligned} \operatorname{tr}\left[(|0 \times 0|)^{2}\right]=\operatorname{tr}[0 \times 0 \mid]=1 ; \quad P=|\psi X \psi| ; \quad P^{2} & =(|\psi X \psi|)(|\psi \times \psi|) \\ & =\rho \text { is positive semi-definite, i.e., }\langle\psi| \rho|\psi\rangle \geq 0 .\end{aligned}$

Operations on mixed states

$$
\begin{aligned}
& \text { - Unitary } U: \rho \mapsto U \rho U^{\dagger} \quad\{\underbrace{\left(p_{i},\left|\psi_{i}\right\rangle\right)}\} \quad P=\sum_{i} p_{i}\left|\psi_{i} \times \psi_{i}\right| \\
& u\left|\psi_{i} \times \psi_{i}\right| u^{+} \\
& \text {© Measurement: " } x \text { " with prob. }\langle x| \rho|x\rangle \\
& \forall i: \\
& =\sum_{i} p_{i} u\left|\psi_{i} X \psi_{i}\right| u^{+} \\
& \left.=u\left(\sum_{i} p_{i}\right) \psi_{i} x \psi_{i}\right) u^{+} \\
& =u \overline{\rho u^{+}} \\
& \left|\psi_{i} x \psi_{i}\right|: ~ " x "\langle x|\left|\psi_{i} x \psi_{i}\right||x\rangle \\
& \text { if pick } i^{\text {th }} \text { bin wp. Pi } \\
& \text { ithbin: } x \text {. } p_{x}^{i} \rightarrow \text { Question: } \\
& \ell \text { pick } \times \text { from } i^{i^{2}} \text { bin }\left(p_{x}^{i}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { then } p_{r}[x]=\left[P_{i} \operatorname{Pr}[x \mid i]\right. \\
& \operatorname{pr} \text { [meas } . x]^{2}=\sum_{i} p_{i}\left(\langle x| \psi_{i} \times \psi_{i}(x)\right.
\end{aligned}
$$

General quantum operations

Let $A_{1}, A_{2}, \ldots, A_{m}$ be matrices satisfying $\sum_{j=1}^{m} A_{j}^{\dagger} A_{j}=I$.
Then the mapping $\rho \mapsto \sum_{j=1}^{m} A_{j} \rho A_{j}^{\dagger}$ is a general quantum operator.

- N.B. A_{i} need NOT be square matrices
- Also known as quantum channels
- admissible operations, completely positive trace preserving maps

Examples of quantum channels

1. Unitary $U^{\dagger} U=I: \rho \mapsto U \rho U^{\dagger}$
2. Decoherence channel $A_{0}=|0\rangle\langle 0|, A_{\underline{q}}=|1\rangle\langle 1|$

- Check validity:

$$
\begin{aligned}
& A_{0}^{+} A_{0}+A_{7}^{+} A_{1}=\mathbb{1} \\
& (10 \times 0 \mid)(10 \times 01)+\left(11 \times_{1} \mid\right)\left(11 X_{1} \mid\right)=\mathbb{1}
\end{aligned}
$$

$$
A_{0}^{10 x_{0}\left(\left.\beta\right|^{2}, \mid 1 x_{11}^{10 X_{0}} A_{0}^{+}\right.}
$$

- Apply to $|\psi\rangle=\alpha|0\rangle+\beta|1\rangle \quad \rho \stackrel{\Phi}{\xrightarrow{\Phi}} \sum_{i} A_{i} \rho_{A_{i}^{+}}^{+} \downarrow$

$$
\left.P=\left(\begin{array}{cc}
\mid \alpha^{2} & \alpha R^{*} \\
\alpha{ }^{*} \alpha^{2} & \alpha| |^{2}
\end{array}\right)=|\alpha|^{2}\left|0 x_{0}\right|+\alpha p^{*}\left|0 x_{1}\right|+\frac{*}{\alpha}| |\left|1 x_{0}\right|+|\beta|^{2}| | x_{1} \right\rvert\,
$$

- Compare to measurement:

$$
\begin{aligned}
& A_{0} \rho A_{0}^{+}=|\alpha|^{2}|0 \times 0| \\
& A_{1} \rho A_{1}^{+}=|\beta|^{2}\left|1 x_{1}\right|+\Phi(|\psi \times \psi|)=\left(\begin{array}{cc}
|\alpha|^{2} & 0 \\
0 & \mid \beta^{2}
\end{array}\right)
\end{aligned}
$$

Examples of quantum channels

3. Partial trace $A_{0}=I \otimes\langle 0|=\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0\end{array}\right), A_{1}=I \otimes\langle 1|=\left(\begin{array}{llll}0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$

- Check validity:
- Apply to $|0\rangle\langle 0| \otimes|+\rangle\langle+|$
. Apply to $|\phi\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)$

Exercise

1. let Tr_{B} denote partial trace of subsystem B. Suppose Alice and Bob shares two qubits in state $|\phi\rangle_{A B}$.
. Apply Tr_{B} to $|\phi\rangle_{A B}=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)$
. Apply Tr_{B} to $|\phi\rangle_{A B}=\frac{1}{\sqrt{2}}(|01\rangle+|10\rangle)$

- Is Alice able to tell the two cases on her side?

Exercise

2. let $T r_{B}$ denote partial trace of subsystem B. Suppose Alice and Bob shares two qubits in state $|\phi\rangle_{A B}$.

- Apply $\operatorname{Tr}_{B} \operatorname{to}|\phi\rangle_{A B}=\frac{3}{5}|00\rangle+\frac{4}{5}|11\rangle$
- Apply $\operatorname{Tr}_{B} \operatorname{to}|\phi\rangle_{A B}=\frac{4}{5}|00\rangle-\frac{3}{5}|11\rangle$
- Is Alice able to tell the two cases on her side?

General measurement

- A measurement is described by a collection of matrices $M=\left\{M_{a}: a \in \Gamma\right\}$ with possible outcomes Γ satisfying $\sum_{a \in \Gamma} M_{a}^{\dagger} M_{a}=I$.

- Example. $M_{0}=|0\rangle\langle 0| \otimes I, M_{1}=|1\rangle\langle 1| \otimes I, \Gamma=\{0,1\}$.

- Measure $\|\psi\rangle=\|+\rangle\|0\rangle$	outcome	probability	posterior state
$\|\psi \times \psi\|=1+X+\|\otimes 10 \times 0\|$	0	$\frac{1}{2}$	\mathbb{Z}

$M_{0}(1+X+1 \otimes 10 \times 01) M_{0}^{+}$
$1 \quad \frac{1}{2}$
$\left.=\left(10 x_{0} \mid+X+10 \times 01\right) \otimes\left|0 X_{0}\right|=\left.\frac{1}{2}|0 \times 0|\right|_{26} ^{\otimes\left|0 x_{0}\right|} \right\rvert\,=\left(\begin{array}{cc}\frac{1}{2} & 0 \\ 0 & 0 \\ 0 & 0\end{array}\right)$

Projective measurement \& POVM

- Projective (von Neumann) measurement: M_{a} projections $\left(M_{a}^{2}=M_{a}\right)$.
- Complete projective measurement $M_{a}=\left|\psi_{a}\right\rangle\left\langle\psi_{a}\right|$ and $\left\{\left|\psi_{a}\right\rangle\right\}$ an orthonormal basis
- \equiv measurement under basis $\left\{\left|\psi_{a}\right\rangle\right\}$
- Positive-operator-valued measurement (POVM) measurement
- $\operatorname{Pr}[a]=\operatorname{Tr}\left(M_{a} \rho M_{a}^{\dagger}\right)=\operatorname{Tr}\left(\left(M_{a}^{\dagger} M_{a}\right) \rho\right)$

$$
\operatorname{Tr}(A B)=\operatorname{Tr}(B A)
$$

- Suffice to specify POVM elements $\left\{E_{a}=M_{a}^{\dagger} M_{a}: a \in \Gamma\right\}$

Logistics

© HW6 due next Sunday

- Project
- Week1o office hour: slots available
- Presentations
- Pre-record your talk by zoom, powerpoint, ... Keep it 20-25 mins
- Live Q\&A in class
- Participate in all talks and fill out peer-evaluation

Discussion on Google's experiment

