S'20 CS410/510 Intro to

quantum computing

Fang Song

Week 8

- Mixed states, density matrices
- General quantum operations
- POVM

Credit: based on slides by Richard Cleve

1. Let I be identity on n qubits. Show that $I = \sum_{x \in \{0,1\}^n} |x\rangle\langle x|$.

- 2. Let $|A\rangle, |B\rangle$ be as defined below. Show that $I=a\,|A\rangle\langle A\,|+b\,|B\rangle\langle B\,|$
 - $A \subseteq \{0,1\}^n, B = \{0,1\}^n \setminus A$

$$|A\rangle := \frac{1}{\sqrt{a}} \sum_{x \in A} |x\rangle, |B\rangle := \frac{1}{\sqrt{b}} \sum_{x \in B} |x\rangle$$

3. Let Z_f be as below. Show that $Z_f = I - 2 |A\rangle\langle A|$. What is $Z_f|A\rangle$?

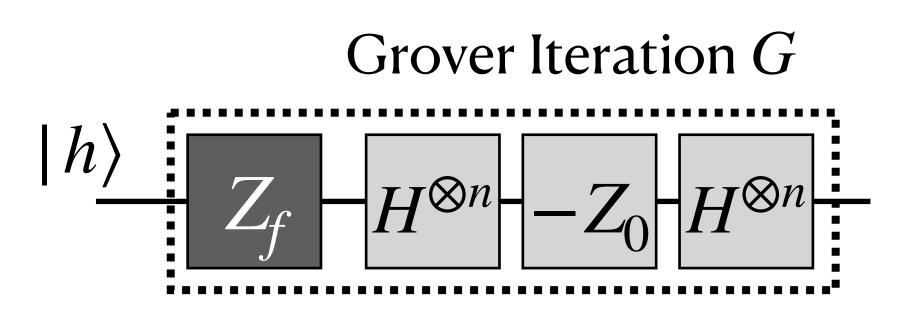
$$Z_f: |x\rangle \mapsto \begin{cases} -|x\rangle, & x \in A \\ |x\rangle, & x \notin A \end{cases}$$

4. Let Z_0 be as below. Show that $Z_0 = I - 2 |0^n\rangle\langle 0^n|$.

$$Z_0: |x\rangle \mapsto \begin{cases} -|x\rangle, & x = 0^n \\ |x\rangle, & x \neq 0^n \end{cases}$$

5. What is $H^{\otimes n}Z_0H^{\otimes n}$?

Review: Grover's algorithm



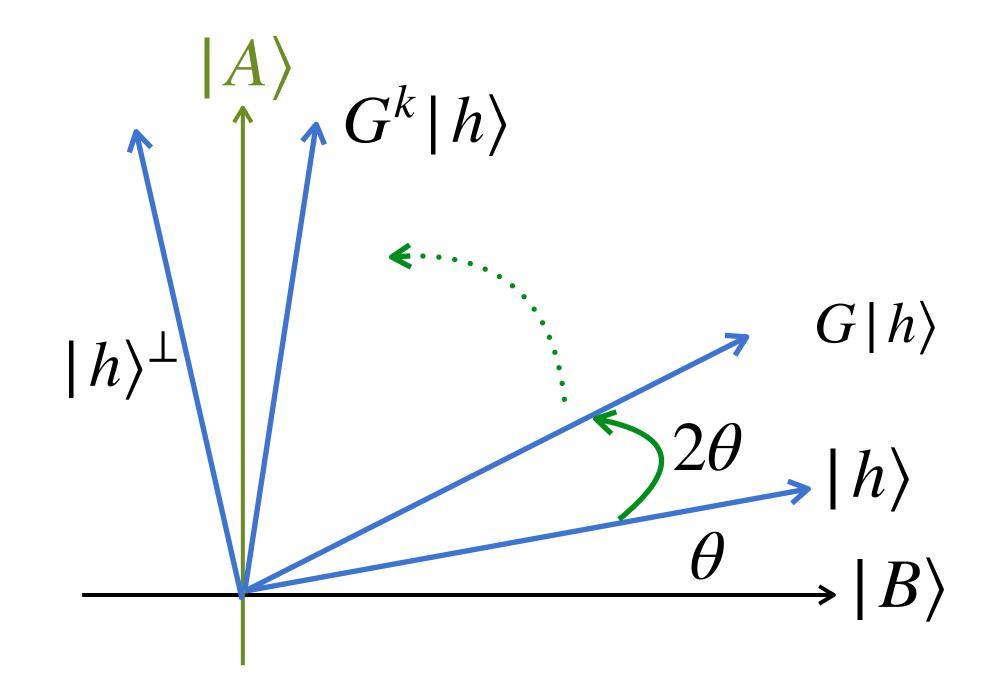
•
$$Z_f = I - 2 |A\rangle\langle A|$$
: reflection about $|B\rangle$

•
$$-HZ_0H = 2|h\rangle\langle h| - I$$
: reflection about $|h\rangle$

•
$$G = (-HZ_0H)Z_f$$
: rotation by 2θ

$$|A\rangle := \frac{1}{\sqrt{a}} \sum_{x \in A} |x\rangle, |B\rangle := \frac{1}{\sqrt{b}} \sum_{x \in B} |x\rangle$$

- $|h\rangle := H^{\otimes n} |0^n\rangle$
- $|h\rangle^{\perp}$: orthogonal to $|h\rangle$ on span $\{|A\rangle, |B\rangle\}$



Quantum algorithms so far

Partial	
function	1

Total function

Problem	Deterministic	Randomized	Quantum
Deutsch	2	2	1
Deutsch-Josza	$2^{n}/2$	O(n)	1
Simon	$2^n/2$	$\sqrt{2^n}$	$O(n^2)$
Order-finding Factoring N (Kitaev/Shor)	$2^{O((\log N)^{1/3}(\log\log N)^{2/3})}$		$(\log N)^3$
Unstructured search (Grover)	$\Omega(2^n)$		$\Theta(\sqrt{2^n})$

oracle model

oracle

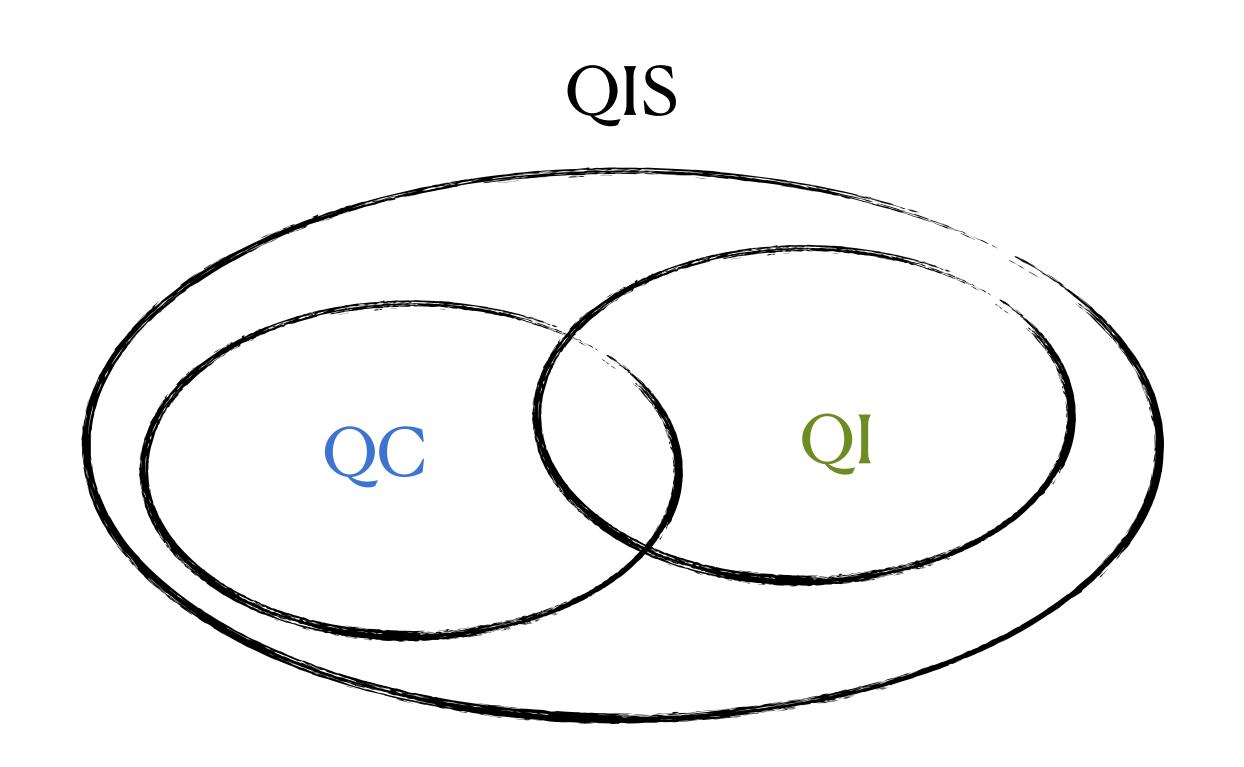
Quantum information theory

An coarse taxonomy

Quantum information science (QIS)

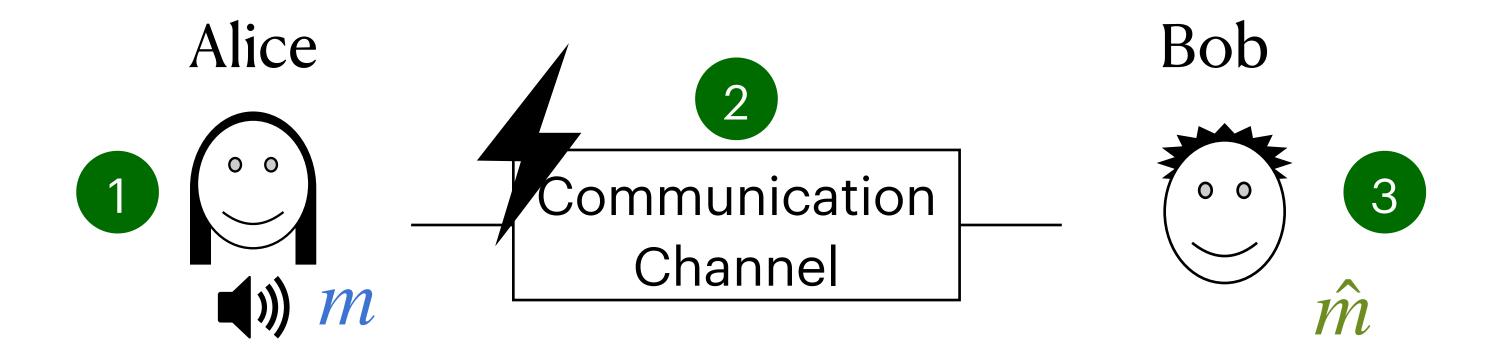
- Quantum computing (QC): making information useful
 - Algorithms, software, ...

- Quantum information (QI): making information available
 - Elementary tasks: create, store, transmit, ...



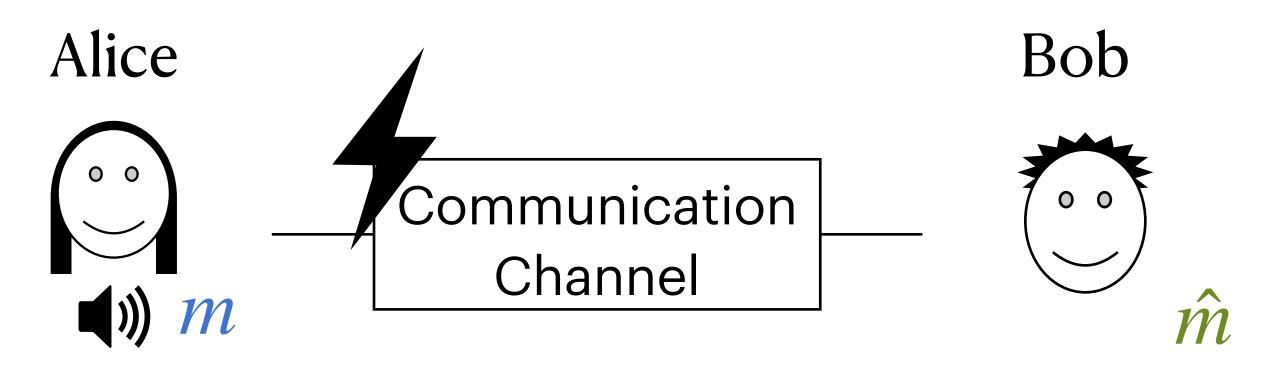
Basic communication scenario

Goal: convey information from Alice to Bob

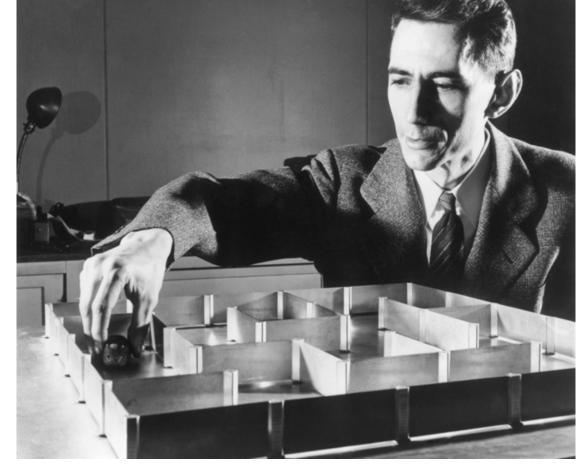


- 1 Alice: information source
- 2 Communication channel (resource): can you get everything I say in class?
- Bob: because of noise, get disturbed \hat{m}

Central questions

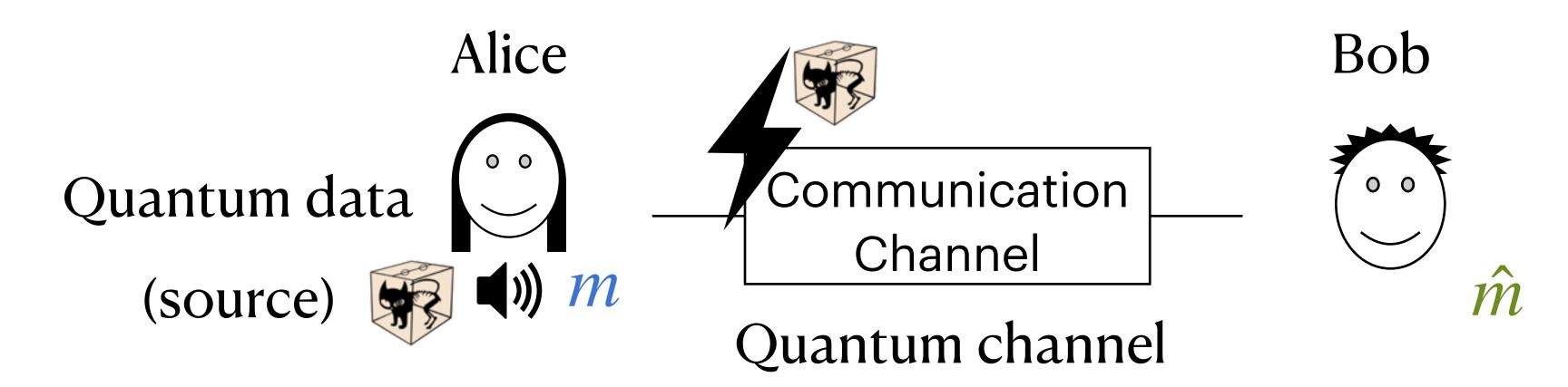


- O. What is information, mathematically?
 - Defining bit as unit of information
- 1. Assuming noiseless channel, how many bits needed to transmit m?
 - Shannon noiseless/source coding theorem: entropy
- 2. Assuming noisy channel, how many bits can be transmitted reliably?
 - Shannon noisy-channel coding theorem: channel capacity
 - Tool: error correcting code





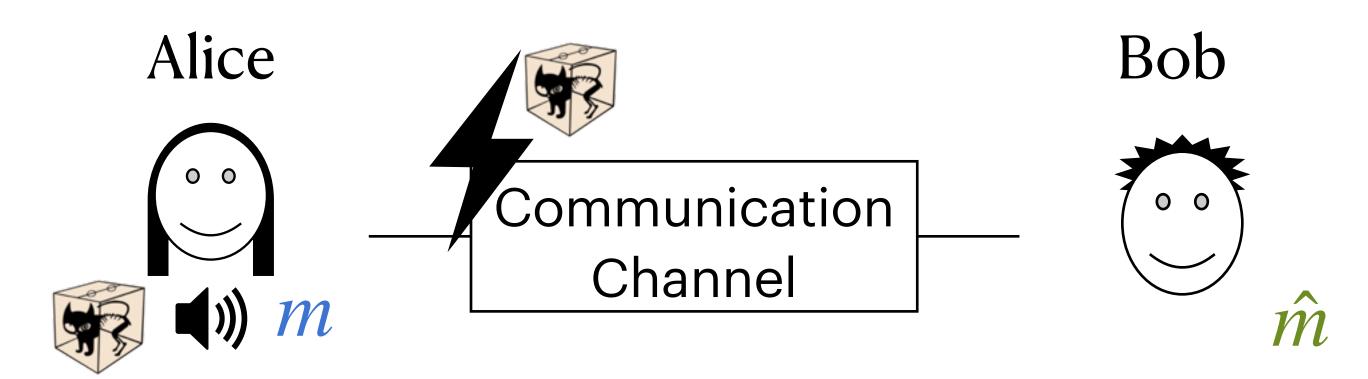
The new quantum player



Channel Source	C		Q	1. 2
Classical	 Shannon theory 		Holevo's bound: # info. in qstates? Capacity to transmit C data	
Quantum	*teleportation	1. 2.	Schumacher's Thm: compress Q data Quantum capacity	ì

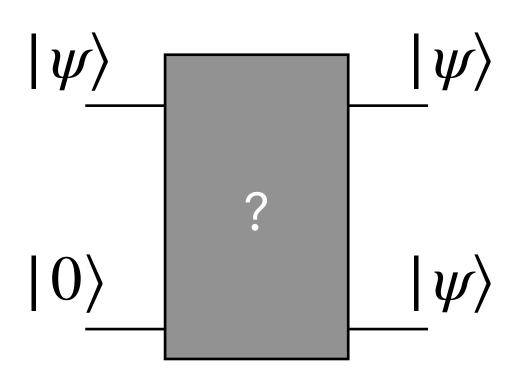
- . Noiseless channel
- 2. Noisy channel

The new quantum player

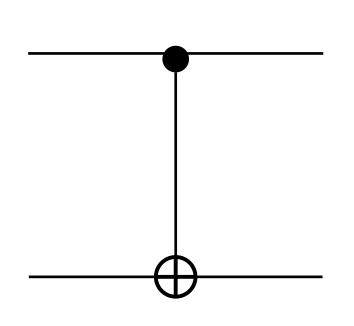


- New resource: entanglement
 - Teleportation, super dense coding
 - Violation of Bell's inequality: validating quantum mechanics
- New challenges (easy for classical information)
 - copying a quantum state?
 - distinguishing states?

Copy a quantum state?



• How about CNOT?

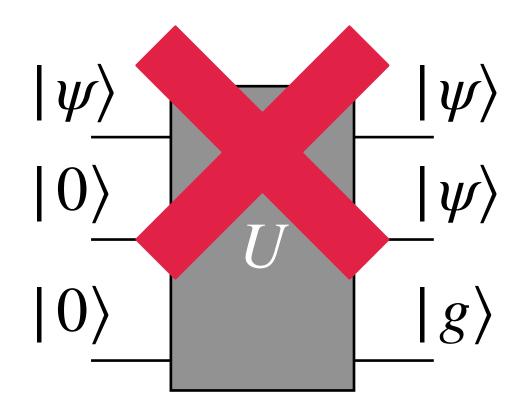


- $|0\rangle|0\rangle \mapsto |0\rangle|0\rangle$
- $|1\rangle|0\rangle \mapsto |1\rangle|1\rangle$

•
$$|+\rangle|0\rangle \mapsto |0\rangle|0\rangle + |1\rangle|1\rangle \neq |+\rangle|+\rangle$$

No-cloning theorem

Theorem. There is no valid quantum operation that maps an arbitrary (unknown) state $|\psi\rangle$ to $|\psi\rangle|\psi\rangle$.



- ullet Proof. (Linearity) Consider two states $|\psi
 angle$ and $|\psi'
 angle$
 - $|\psi\rangle|0\rangle|0\rangle\mapsto|\psi\rangle|\psi\rangle|g\rangle$

U preserves inner product

•
$$|\psi'\rangle|0\rangle|0\rangle \mapsto |\psi'\rangle|\psi'\rangle|g'\rangle$$

Density matrix formalism

Another continent language

State vector formalism

- ullet State: $|\psi\rangle\in\mathbb{C}^d$
- ullet Unitary operation $U: |\psi\rangle \mapsto U|\psi\rangle$
- Measuring in computational basis

$$\sum_{x} \alpha_{x} |x\rangle : "x" \text{ w.p. } |\alpha_{x}|^{2}, \text{ p.s. } |x\rangle$$

Density matrix formalism

- State: $\rho = |\psi\rangle\langle\psi|$ (density matrix)
 - Ex. $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$
- lacktriangle Unitary $U:
 ho \mapsto U
 ho U^\dagger$
- Measuring in computational basis

$$\rho = \sum_{x,x'} \alpha_x \alpha_{x'}^* |x\rangle \langle x'| : "x" \text{ w.p.}$$

$$\langle x | \rho | x\rangle, \text{ p.s. } |x\rangle \langle x|$$

1. Analyze the circuit below under both formalisms.

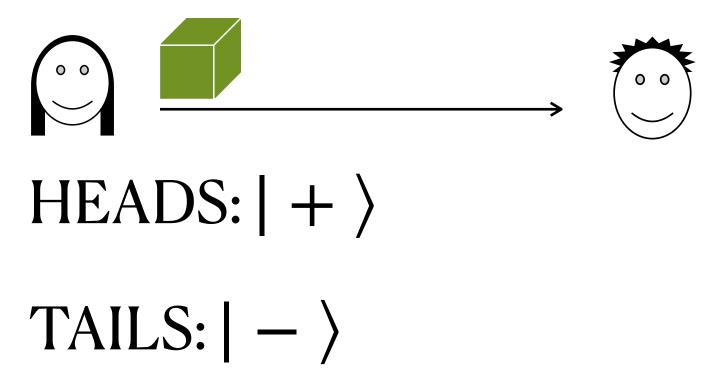
$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle - X$$

2. Consider two qubits in state $|+\rangle |-\rangle$. Write down its density matrix.

Pure states vs. mixed states

- ullet Alice flips a coin, prepare $|0\rangle$ or $|1\rangle$ accordingly.
- Bob receives the register (Alice's coin unknown). How to describe his state?
 - $\{(\frac{1}{2},|0\rangle),(\frac{1}{2},|1\rangle)\}$ no compact representation as state vectors
 - Density matrix representation: $\rho = \frac{1}{2} |0\rangle\langle 0| + \frac{1}{2} |1\rangle\langle 1|$
- ullet This is called a mixed state. In contrast, $|\psi
 angle$ is called a pure state.

1. Alice flips a coin and prepares a qubit as follows. She then sends the qubit (but not the coin) to Bob. How to describe Bob's state?



2. Write down the density matrix explicitly and compare with the previous slide.

General mixed states

• Mixed state = a probability distribution (mixture) over pure states

$$\{(p_i,|\psi_i\rangle): i=1,\ldots,k\}: \rho=\sum_i p_i|\psi_i\rangle\langle\psi_i|$$

- Properties of density matrices
 - $tr(\rho) = 1$

• ρ is pure iff. $tr(\rho^2) = 1$ (Think of examples in previous slides)

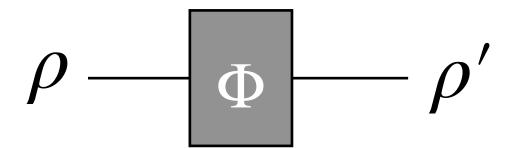
• ρ is positive semi-definite, i.e., $\langle \psi | \rho | \psi \rangle \ge 0$.

Operations on mixed states

lacktriangle Unitary $U:
ho\mapsto U
ho U^\dagger$

• Measurement: "x" with prob. $\langle x | \rho | x \rangle$

General quantum operations



Let
$$A_1, A_2, ..., A_m$$
 be matrices satisfying $\sum_{j=1}^m A_j^{\dagger} A_j = I$.

Then the mapping $ho\mapsto\sum_{j=1}^mA_j
ho A_j^\dagger$ is a general quantum operator.

- ullet N.B. A_i need NOT be square matrices
- Also known as quantum channels
 - admissible operations, completely positive trace preserving maps

Examples of quantum channels

1. Unitary $U^{\dagger}U=I: \rho \mapsto U\rho U^{\dagger}$

- 2. Decoherence channel $A_0 = |0\rangle\langle 0|, A_0 = |1\rangle\langle 1|$
 - Check validity:

• Apply to $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$

• Compare to measurement:

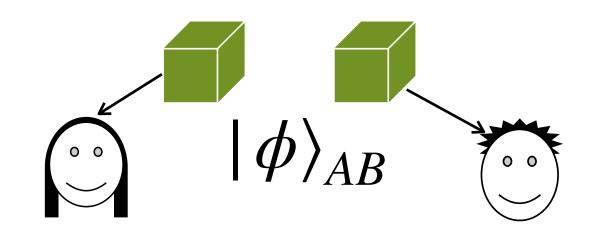
Examples of quantum channels

3. Partial trace
$$A_0 = I \otimes \langle 0 | = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}, A_1 = I \otimes \langle 1 | = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Check validity:

• Apply to $|0\rangle\langle 0|\otimes |+\rangle\langle +|$

• Apply to
$$|\phi\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$

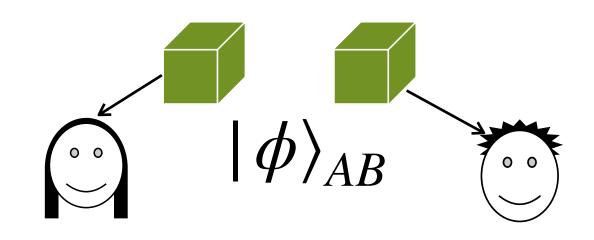


1. let Tr_B denote partial trace of subsystem B. Suppose Alice and Bob shares two qubits in state $|\phi\rangle_{AB}$.

• Apply
$$Tr_B$$
 to $|\phi\rangle_{AB} = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$

• Apply
$$Tr_B$$
 to $|\phi\rangle_{AB} = \frac{1}{\sqrt{2}}(|01\rangle + |10\rangle)$

• Is Alice able to tell the two cases on her side?



2. let Tr_B denote partial trace of subsystem B. Suppose Alice and Bob shares two qubits in state $|\phi\rangle_{AB}$.

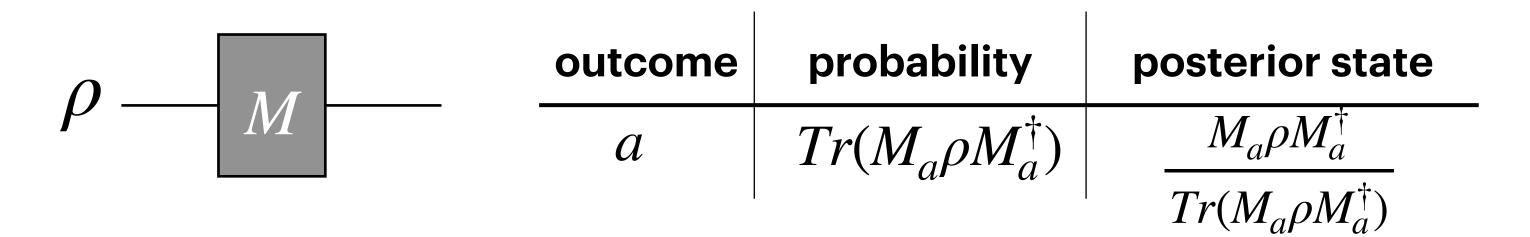
• Apply
$$Tr_B$$
 to $|\phi\rangle_{AB} = \frac{3}{5}|00\rangle + \frac{4}{5}|11\rangle$

• Apply
$$Tr_B$$
 to $|\phi\rangle_{AB} = \frac{4}{5}|00\rangle - \frac{3}{5}|11\rangle$

• Is Alice able to tell the two cases on her side?

General measurement

ullet A measurement is described by a collection of matrices $M=\{M_a:a\in\Gamma\}$ with possible outcomes Γ satisfying $\sum_{a\in\Gamma}M_a^\dagger M_a=I.$



- $\blacksquare \text{ Example. } M_0 = |0\rangle\langle 0| \otimes I, M_1 = |1\rangle\langle 1| \otimes I, \Gamma = \{0,1\}.$
 - Measure $|\psi\rangle = |+\rangle |0\rangle$ outcome probability posterior state

Projective measurement & POVM

- ullet Projective (von Neumann) measurement: M_a projections ($M_a^2=M_a$).
 - Complete projective measurement $M_a = |\psi_a\rangle\langle\psi_a|$ and $\{|\psi_a\rangle\}$ an orthonormal basis
 - \equiv measurement under basis $\{ |\psi_a \rangle \}$
- Positive-operator-valued measurement (POVM) measurement
 - $\Pr[a] = Tr(M_a \rho M_a^{\dagger}) = Tr((M_a^{\dagger} M_a) \rho)$
 - Suffice to specify POVM elements $\{E_a = M_a^{\dagger} M_a : a \in \Gamma\}$

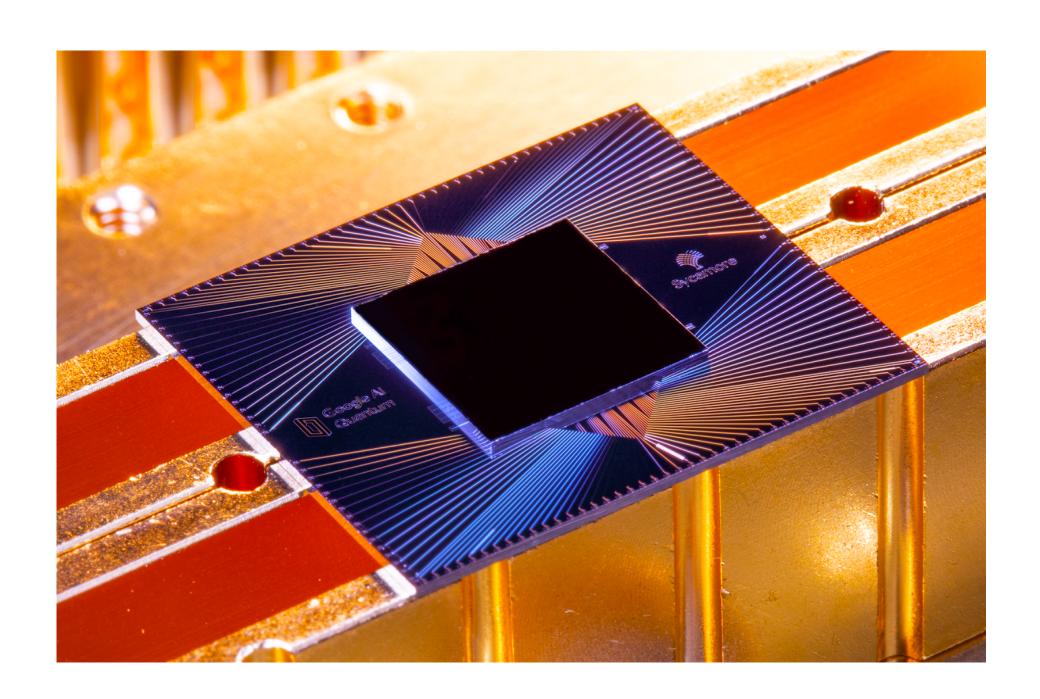
Logistics

• HW6 due next Sunday

Project

- Week10 office hour: slots available
- Presentations
 - Pre-record your talk by zoom, powerpoint, ... Keep it 20 25 mins
 - Live Q&A in class
 - Participate in all talks and fill out peer-evaluation

Discussion on Google's experiment



Scratch