S'20 CS 410/510

Intro to quantum computing

Week 4

- Simon's algorithm
- Reversible computation

Fang Song

Credit: based on slides by Richard Cleve

Exercise: Hadamard

1. What is $H^{2}:=H H$?

$$
H=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) \quad H^{+}=H
$$

DEF of Unitary

$$
=I
$$

2. What is the matrix form of $H^{\otimes 2}:=H \otimes H$?

$$
H^{\otimes 2}=H \otimes H=\frac{1}{2}(\quad)_{4 \times 4}
$$

3. Let $|\psi\rangle=\frac{1}{\sqrt{2^{3}}} \sum_{x \in\{0,1\}^{3}}|x\rangle$. What is $H^{\otimes 3}|\psi\rangle$?

$$
\begin{aligned}
|\psi\rangle=\frac{1}{\sqrt{2^{3}}} \sum_{x \in\left\{0,13^{3}\right.}|x\rangle & H^{\otimes n}|x\rangle=\frac{1}{\sqrt{2}} \sum_{y \in 50,13^{n} \psi}|y\rangle \\
H^{\otimes 3}|\psi\rangle & =\frac{1}{\sqrt{2^{3}}} \sum_{x} H^{\otimes 3}|x\rangle \\
& =\frac{1}{\sqrt{2^{3}}} \sum_{x} \frac{1}{\sqrt{2^{3}}} \sum_{y}(-1)^{x \cdot y}|y\rangle \quad \begin{array}{c}
|x\rangle \\
|x\rangle+y_{2} y_{2}+\cdots+x_{n} y_{n} \bmod 2 \\
1000\rangle \\
\vdots
\end{array}
\end{aligned}
$$

Asymptotic notations

$$
O(\cdot), \Omega(\cdot), \Theta(\cdot), o(\cdot), \omega(\cdot)
$$

Notation	Definition	Think	Example
$f(n)=O(g(n))$	$\exists c>0, n_{0}>0, \forall n>n_{0}:$ $0 \leq f(n) \leq c g(n)$	Upper bound	$100 n^{2}=O\left(n^{3}\right)$
$f(n)=\Omega(g(n))$	$\exists c>0, n_{0}>0, \forall n>n_{0}:$ $0 \leq c g(n) \leq f(n)$	Lower bound	$100 n^{2}=\Omega\left(n^{1.5}\right)$
$f(n)=\Theta(g(n))$	$f(n)=O(g(n))$ $\& f(n)=\Omega(g(n))$	Tight bound	$\log (n!)$ $=\Theta(n \log n)$
$o(\cdot), \omega(\cdot)$		Strict upper/lower bound	$n^{2}=o\left(2^{n}\right)$ $n^{2}=\omega(\log n)$

$\Omega(1)$ constant $1000,3 / 4 \cdots$

Reflection on Deutsch-Josza

Given: black-box $f:\{0,1\}^{n} \rightarrow\{0,1\}$ either constant or balanced

- constant means $f(x)=0$ for all x, or $f(x)=1$ for all x
- balanced means $\Sigma_{x} f(x)=2^{n-1}$

Goal: decide which case

- Consider all $f:\{0,1\}^{\frac{3}{h}} \rightarrow\{0,1\}$
- \# of constant functions

- \# of balanced functions $\quad \underline{70} \quad 2^{3}=8 \quad\binom{8}{4}=\frac{8!}{4!(8-4)!}=\frac{8 \times 7 \times 6 \times 5}{4 \times 3 \times 2 \times 1}$
- Total \# of functions $\underline{256}\left(2^{2^{n}}\right)$
- This is called a Promise problem

Reflection on Deutsch-Josza

How to distinguish between the two cases?
What is $H^{\otimes n}|\psi\rangle$?

- Constant: $H^{\otimes n}|\psi\rangle= \pm|00 \ldots 0\rangle$
- Balanced: $H^{\otimes n}|\psi\rangle \in(\pm|00 \ldots 0\rangle)^{\perp}$

Simon's algorithm

Quantum vs. classical separations

Black-box problem	Classical deterministic	Randomized $\Omega(1)$ prob.	Quantum
Deutsch (1-bit constant vs. balanced)	2 (queries)	2 (queries)	1 (query)
Deutsch-Josza (n-bit constant vs. balanced)	$2^{n-1}+1$	$\Omega(n)$	1 Exact
Simon	$2^{n-1}+1$	$\Omega\left(\sqrt{2^{n}}\right)$	$0(n)$ $\Omega(1)$ prob.

Simon's problem

Given: a black-box function $f:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$

- Promise: there exists secret $s \neq 0^{n}$ such that

$$
\forall x \neq x^{\prime} \in\{0,1\}^{n}, f(x)=f\left(x^{\prime}\right) \text { 蔺和 } x \oplus x^{\prime}=s
$$

Goal: find secret string s.
Example.

e. | x | $f(x)$ |
| :---: | :---: |
| 000 | 011 |
| 001 | 101 |
| 010 | 000 |
| 011 | 010 |
| 100 | 101 |
| 101 | 011 |
| 110 | 010 |
| 111 | 000 |

x	$f(x)$
$x_{1}, x_{1} \bigoplus s$	
$x_{2}, x_{2} \bigoplus s$	
\ldots	
$x_{k}, x_{k} \bigoplus s$	
\ldots	

Classical algorithms for Simon

$x-f(x)$

- Search for a collision: an $x \neq y$ such that $f(x)=f(y)$
- Choose $x_{1}, x_{2}, \ldots, x_{k} \in\{0,1\}^{n}$ randomly (independently)
- For all $i \neq j$, if $f\left(x_{i}\right)=f\left(x_{j}\right)$, then output $x_{i} \bigoplus x_{j}$ and halt
- A hard case: s is chosen at random $\& f(x)$ is chosen randomly subject to the structure implied by s
- Birthday bound: $k=\Theta\left(\sqrt{2^{n}}\right)$ to see a collision with constant (e.g., 3/4) probability
- This strategy is essentially optimal. (NB. You have to rule out all possible randomized algorithms)

A quantum algorithm for Simon

Recall: quantum black-box function
 Unitary $B_{f}:|x\rangle|y\rangle \mapsto|x\rangle|y \oplus f(x)\rangle$

Deutsch-Josza

Simon's algorithm

1. Run Simon's quantum sampling subroutine k times.

Obtain samples y_{1}, \ldots, y_{k}
2. Post-processing. Classical

Solving linear system to find s

Theorem. $k=O(n)$ quantum queries suffice to find $s w$. prob. $\geq 1 / 4$.

Simon's algorithm: analysis

1. Run Simon's quantum sampling subroutine k times.

Obtain samples $y_{1}, \ldots, y_{k} \in\{0,1\}^{n}$
2. Classical post-processing on $\left\{y_{i}\right\}$.

Solving linear system to find s
a What do the samples y_{i} tell us?
(b) How many samples are needed?

Remarks on notations

- $x y, \alpha \beta, A B$ usually denotes multiplication (integers, complex numbers, matrices)
- Strings $x, y \in\{0,1\}^{n}, x \cdot y$ denotes dot product, i.e., sum of bit-wise mult. $\bmod 2$ (for single bit: $x+y \bmod 2=x \oplus y, x \cdot y=x y$)
- Concatenation $x \| y$

Simon's algorithm: analysis I
a What do the samples y_{i} tell us?
$n=3 \quad|x\rangle=1000\rangle$

$$
\begin{aligned}
& \stackrel{\left|0^{n}\right\rangle\left|0^{n}\right\rangle}{\stackrel{H^{\left(\theta^{n} \otimes\right.} \mathbb{1}}{\longrightarrow}}\left(\frac{1}{\sqrt{2^{n}}} \sum_{\left(x \in\left\{0,13^{n}\right)\right.}|x\rangle\right)\left|0^{n}\right\rangle \\
& =\frac{1}{\sqrt{2^{n}}} \sum_{x}|x\rangle\left|0^{n}\right\rangle \\
& \stackrel{B_{f}}{\longrightarrow} \frac{1}{\sqrt{z^{n}}} \sum_{x} B_{f}\left(|x\rangle\left|0^{n}\right\rangle\right)
\end{aligned}
$$

$$
B_{f}:|x\rangle|y\rangle \mapsto|x\rangle|y \oplus f(x)\rangle \underset{e^{\frac{z^{n}}{x}}}{\underline{\sqrt{2^{n}}}} \sum_{x}|x\rangle|f(x)\rangle
$$

Simon's algorithm: analysis I
a What do the samples y_{i} tell us?

$$
n=3 \quad|x\rangle=1000\rangle
$$

$$
B_{f}:|x\rangle|y\rangle \mapsto|x\rangle|y \oplus-(x)\rangle
$$

$$
\sum \frac{1}{\sqrt{2^{n}}} \sum_{x}|x\rangle|f(x)\rangle
$$

- which terms contribute to " a "?

$$
\frac{\text { ie. } f^{-1}(a)=\left\{x_{a}, x_{a} \oplus S\right\}}{\frac{\frac{1}{\sqrt{2^{n}}}\left(\left|x_{a}\right\rangle+\left|x_{a} \oplus S\right\rangle\right)|a\rangle}{\sqrt{\left(\frac{1}{2^{n}}+\frac{1}{2^{n}}\right)}}}
$$

Simon's algorithm: analysis I
a What do the samples y_{i} tell us?

$$
\begin{aligned}
& { }_{n}|0\rangle \xrightarrow{ } \xrightarrow{H^{\otimes n}} \frac{1}{\sqrt{2}}\left(H^{\otimes n}\left(x_{a}\right)+H^{\otimes}\left(x_{a} \oplus s\right\rangle\right) \\
& \left.=\frac{1}{\sqrt{2^{n+1}}}\left(\sum_{y \in\left\{0,13^{n}\right.}(-1)^{x_{n}} \cdot y|y\rangle+\sum_{\substack{y \in\{0,1\}^{n}}}(-1)^{\left(x_{Q} \oplus\right) \cdot}\right) \cdot y\right) \\
& B f:|x\rangle|y\rangle \mapsto|x\rangle|y \oplus-(x)\rangle \\
& H^{\otimes n}|x\rangle=\frac{1}{\sqrt{2^{n}}} \sum_{y}(-1)^{x \cdot y}(y) \\
& \stackrel{4}{=} \frac{1}{\sqrt{2^{n+1}}} \sum_{y \in\{0,2\}^{n}}\left((-1)^{x_{a}-y}+(-1)^{\left.\left(x_{a} \oplus\right\}\right) \cdot y}\right)|y\rangle
\end{aligned}
$$

Simon's algorithm: analysis I
a What do the samples y_{i} tell us?

$$
\begin{aligned}
\text { ell us? } & \frac{1}{\sqrt{2^{n+1}}} \sum_{y \in\{0,1\}^{n}}\left((-1)^{x_{a} \cdot y}+(-1)^{\left(x_{a} \oplus s\right) \cdot y}\right)|y\rangle \\
& =\sum_{y \in\{0,1\}^{n}} \alpha_{y}|y\rangle \\
\alpha_{y}:= & \frac{1}{\sqrt{2^{n+1}}}\left((-1)^{x_{a}-y}+(-1)^{\left.\left(\alpha_{a} \oplus S\right) \cdot y\right)}\right.
\end{aligned}
$$

$\xrightarrow{\text { meas }}$

$$
\begin{aligned}
B_{f}:|x\rangle|y\rangle & \mapsto|x\rangle \mid y(-(x)\rangle \\
H^{\otimes n}|x\rangle & =\frac{1}{\sqrt{2^{n}}} \sum_{y}(-1)^{x \cdot y}(y)
\end{aligned}
$$

Simon's algorithm: analysis I
a What do the samples y_{i} tell us?

$$
\left(x_{a} \oplus s\right) \cdot y=x_{a} \cdot y \oplus s \cdot y
$$

$$
d y:=\frac{1}{\sqrt{z^{n+1}}}\left((-1)^{x_{a}-y}+(-1)^{\left(x_{a} \oplus s\right) \cdot y}\right)
$$

$\xrightarrow{\text { meas }}$

$$
\begin{aligned}
\operatorname{Pr}[y] & =|\alpha y|^{2}=\frac{1}{2^{n+1}}\left|(-1)^{x_{n}}+y(-1)^{\left(x_{a}(\theta)\right) \cdot y}\right|^{2} \\
& =\frac{1}{2^{n+1}}\left|-(-1)^{x_{a} \cdot y}+\frac{(-1)^{x_{a}} \cdot y}{s \cdot y} \cdot(-1)^{s \cdot y}\right|^{2} \\
& \left.=\frac{1}{2^{n+1}} \right\rvert\, 1+(-1)^{2}
\end{aligned}
$$

Simon's algorithm: analysis I
a What do the samples y_{i} tell us?

$$
\left(x_{a} \oplus s\right) \cdot y=x_{a} \cdot y \oplus s \cdot y
$$

$$
\begin{aligned}
& \text { II us? } \\
& d_{y}:=\frac{1}{\sqrt{z^{n+1}}}\left((-1)^{x_{a}-y}+(-1)^{\left(x_{a} \oplus s\right) \cdot y}\right)
\end{aligned}
$$

$1 \xrightarrow{\text { meas }}$

$$
\left.\operatorname{pr}[y]=\left|\alpha_{y}\right|^{2}=\frac{1}{2^{n+1}} \right\rvert\, 1+(-1)^{s}
$$

case 1: $y \cdot s=1 \quad\left|\alpha_{1}\right|^{2}=0$
case 2: $\quad y \cdot s=0 \quad|\alpha y|^{2}=\frac{1}{2^{n-1}}$
what " y ' we can see?

- $y \cdot s=0$ arandom y

Simon's algorithm: analysis II

b How many samples are needed?

$$
\begin{gathered}
y_{1} \cdot s=0 \\
y_{2} \cdot s=0 \\
\cdots \\
y_{k} \cdot s=0
\end{gathered} \quad \Leftrightarrow \quad\left(\begin{array}{cccc}
y_{11} & y_{12} & \cdots & y_{1 n} \\
y_{21} & y_{22} & \cdots & y_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
y_{k 1} & y_{k 2} & \cdots & y_{k n}
\end{array}\right)\left(\begin{array}{c}
s_{1} \\
s_{2} \\
\vdots \\
s_{n}
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right)
$$

Fact. When $k=n-1$, unique solution s with prob. $\geq \frac{1}{4}$ $\operatorname{Pr}\left[y_{1}, \ldots, y_{n-1}\right.$ linearly indep. $] \geq 1 / 4$
Efficient algorithm: $O\left(n^{2.376}\right)$ Coppersmith-Winograd

Simon's algorithm: a geometric interpretation

- Viewing $\{0,1\}^{n}$ as a vector space
- $\mathbb{Z}_{2}:=\{0,1\}$ with addition and multiplication $\bmod 2$ is a field
- $\{0,1\}^{n}=\mathbb{Z}_{2} \times \cdots \times \mathbb{Z}_{2}=\mathbb{Z}_{2}^{n}$ is an n-dimensional vector space over \mathbb{Z}_{2}
- Let $x \cdot y=x_{1} y_{1}+\cdots x_{n} y_{n} \bmod 2$ "dot product"
- $x \cdot y=0$ can be interpreted as the vectors being "orthogonal" (Not precise: e.g., $\exists x \neq 0, x \cdot x=0$)

Recap: quantum speedups

Black-box problem	Classical deterministic	Randomized $\Omega(1)$ prob.	Quantum
Deutsch (1-bit constant vs. balanced)	2 (queries)	2 (queries)	1 (query)
Deutsch-Josza (n-bit constant vs. balanced)	$2^{n-1}+1$	$\Omega(n)$	1 Exact
Simon	$2^{n-1}+1$	$\Omega\left(\sqrt{2^{n}}\right)<$	$\longrightarrow(n)$ $\Omega(1)$ prob.

Exercise: amplifying the success probability

Reversible computation

Quantum vs. classical computation

- We've seen a few examples where quantum algorithms outperform classical ones \rightarrow quantum computer is powerful
- But, wait a second, we haven't even justified a basic goal ...

Is a quantum computer (at least) as powerful as a classical computer?
i.e. can an arbitrary efficient classical algorithm (circuit) be converted to an efficient quantum algorithm (circuit)?

- Not immediate, quantum ckt (w.o. meas.) is unitary \rightarrow reversible

$$
|\psi\rangle-U-U^{\dagger}-|\psi\rangle
$$

Simulating classical circuit

- Consider $f:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$

Ex. $f\left(x_{1}, x_{2}\right)=x_{1}+x_{2} \bmod 2^{m}, n=2 m$

1. Making classical circuit reversible

- Def. A Boolean gate is reversible if it has the same input / output size, and the input to output mapping is a bijection.

1. Making classical circuit reversible

- Fact. \{AND, NOT\} gates are universal for classical circuits
- NOT is reversible
- Can we simulate AND by Toffoli?
"garbage"
NAND

1. Making classical circuit reversible

Replace each AND with

$$
\left|C_{f}\right|=k \xrightarrow{\text { reversible Toffoli gadget }}\left|R C_{f}\right|=O(k)
$$

2. Cleaning up the junk

-What does the "mirror" of $R C_{f}$ do? it uncomputes

2. Cleaning up the junk

Quantum circuit $U_{f}:|x\rangle|y\rangle \mapsto|x\rangle|y \oplus f(x)\rangle \quad\left|U_{f}\right|=2\left|R C_{f}\right|+m$

Summary

Corollary. $\mathbf{B P P} \subseteq(\mathbf{B Q P}$ (More to come in future]
Any problem that a classical computer can solve efficiently can be solved on a quantum computer efficiently too

Logistics

- HW3 due Sunday

- Project
- Project page: instructions and suggested topics
- Send me your group information by end of today (April 24 II:59pm AoE).
- Proposal due next Sunday May $3^{\text {rd }}$, II:59pm AoE.
- Ask for feedback and start brainstorming (e.g., Campuswire private chat rooms)
- End of today's lecture: group discussion

Project discussion

CCC report

- Quantum algorithms
- List 3 major algorithm design directions
- What is the prospect of the timeline for quantum algorithms?
- Quantum computing architecture
- List three major considerations facing a quantum architecture design
- Quantum programming
- What is the focus of current effort and what future effort would be needed?
- Verification
- What are the different levels of verification? What tools are needed?

Scratch

