

F, 04/24/2020

Week 4

- Simon's algorithm
- Reversible computation

Intro to quantum computing

S'20 CS 410/510

Fang Song

Credit: based on slides by Richard Cleve

Exercise: Hadamard
1. What is
$$H^{2} := HH$$
? $H = \int_{2}^{1} \begin{pmatrix} l & l \\ l & -l \end{pmatrix}$ $H^{+} = H$ $H^{+} = H^{+} = \int_{2}^{2} \int_{2}^{1} \int_{2}$

Asymptotic notations

$O(\cdot), \Omega(\cdot), \Theta(\cdot), o(\cdot), \omega(\cdot)$

Notation	Definition	Think	Example
f(n) = O(g(n))	$\exists c > 0, n_0 > 0, \forall n > n_0: \\ 0 \le f(n) \le cg(n)$	Upper bound	$100n^2 = O(n^3)$
$f(n) = \Omega(g(n))$	$ \exists c > 0, n_0 > 0, \forall n > n_0: \\ 0 \le cg(n) \le f(n) $	Lower bound	$\underbrace{(100n^2 = \Omega(n^{1.5}))}_{}$
$f(n) = \Theta(g(n))$	f(n) = O(g(n)) & $f(n) = \Omega(g(n))$	Tight bound	$log(n!) = \Theta(n \log n)$
$o(\cdot), \omega(\cdot)$		Strict upper/lower bound	$n^{2} = o(2^{n})$ $n^{2} = \omega(\log n)$

L(1) constant 1000 3/4 ...

- constant means f(x) = 0 for all x, or f(x) = 1 for all x
- balanced means $\Sigma_x f(x) = 2^{n-1}$

Goal: decide which case

• Consider all
$$f: \{0,1\}^{n} \rightarrow \{0,1\}$$

• # of constant functions

- # of balanced functions
- Total # of functions
- This is called a Promise problem

How to distinguish between the two cases? What is $H^{\otimes n} |\psi\rangle$?

- Constant: $H^{\otimes n}|\psi\rangle = \pm |00 \dots 0\rangle$
- Balanced: $H^{\otimes n}|\psi\rangle \in (\pm|00...0\rangle)^{\perp}$

Simon's algorithm

Quantum vs. classical separations

Black-box problem	Classical	Randomized	Quantum
	deterministic	$\Omega(1)$ prob.	
Deutsch	2 (queries)	2 (queries)	1 (query)
(1-bit constant vs. balanced)			
Deutsch-Josza	$2^{n-1} + 1$	$\Omega(n)$	1
(<i>n</i> -bit constant vs. balanced)			Exact
Simon	$2^{n-1} + 1$	$\Omega(\sqrt{2^n})$	0(<i>n</i>)
			$\Omega(1)$ prob.

• Search for a collision: an $x \neq y$ such that f(x) = f(y)

- Choose $x_1, x_2, ..., x_k \in \{0,1\}^n$ randomly (independently)
- For all $i \neq j$, if $f(x_i) = f(x_j)$, then output $x_i \oplus x_j$ and halt
- A hard case: s is chosen at random & f(x) is chosen randomly subject to the structure implied by s

Classical algorithms for Simon

X

- Birthday bound: $k = \Theta(\sqrt{2^n})$ to see a collision with constant (e.g., 3/4) probability
- This strategy is essentially optimal. (NB. You have to rule out all possible randomized algorithms)

f(x)

Recall: quantum black-box function Unitary $B_f: |x\rangle|y\rangle \mapsto |x\rangle|y \oplus f(x)\rangle$

A quantum algorithm for Simon

Deutsch-Josza

Simon's algorithm

1. Run Simon's quantum sampling subroutine k times.

Obtain samples y_1, \dots, y_k

2. Post-processing. *Classical* Solving linear system to find *s*

Theorem. k = O(n) quantum queries suffice to find *s* w. prob. $\ge 1/4$.

Simon's algorithm: analysis

1. Run Simon's quantum sampling subroutine k times.

Obtain samples $y_1, ..., y_k \in \{q_1\}^N$ 2. Classical post-processing on $\{y_i\}$. Solving linear system to find s

How many samples are needed?

- a What do the samples y_i tell us?
- b
- Remarks on notations
 - $xy, \alpha\beta, AB$ usually denotes multiplication (integers, complex numbers, matrices)
 - Strings $x, y \in \{0,1\}^n$, $x \cdot y$ denotes dot product, i.e., sum of bit-wise mult. mod 2 (for single bit: $x + y \mod 2 = x \oplus y$, $x \cdot y = xy$)
 - Concatenation x||y

Simon's algorithm: analysis I 1×7= (000) れこて What do the samples y_i tell us? $\sum_{x} |x\rangle| \langle x \rangle$ H $\overline{2^{h'}}$ H3 meas B_{f} Posterior state W.P. observe bottom $\left| \mathbf{0} \right\rangle$ 2n-1 <u>√2 (1×a) + (×a⊕s))</u> affailt n gubits n · which terms contribute to `a'? i.e. f-(a) = { xa, xa = } BC: X>1X> x_a) + $(X_a \oplus S >)$ 1a> 12

Simon's algorithm: analysis I What do the samples y_i tell us? $4 = \frac{1}{2^{n+1}} \sum_{\substack{y \in \{2,2,2\}^{n}}} (x_a \oplus y) \cdot y > y > y \in \{2,2,2\}^n$ H $= \sum_{\substack{y \in \mathbb{Z}^{0,1}\}^{h}}} dy (y)$ $= \frac{1}{\sqrt{2^{h+1}}} ((-1)^{X_{2}-y} + (-1)^{(h_{2}\oplus S)\cdot y})$ B_{f} n 065. Po Herior S dy $B_{f}: |x>|y>| \rightarrow |x>|y \oplus w >$ $H^{\otimes n} |x> = \overline{\mathbb{R}} \mathbb{Z}_{y}(-1)^{x,y}(y)$

Simon's algorithm: analysis II

How many samples are needed?

h

$$\begin{array}{cccc} y_{1} \cdot s = 0 \\ y_{2} \cdot s = 0 \\ \dots \\ y_{k} \cdot s = 0 \end{array} \qquad \Leftrightarrow \qquad \begin{pmatrix} y_{11} & y_{12} & \dots & y_{1n} \\ y_{21} & y_{22} & \dots & y_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ y_{k1} & y_{k2} & \dots & y_{kn} \end{pmatrix} \begin{pmatrix} s_{1} \\ s_{2} \\ \vdots \\ s_{n} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

Fact. When k = n - 1, unique solution *s* with prob. $\geq \frac{1}{4}$ $\Pr[y_1, \dots, y_{n-1} \text{ linearly indep.}] \geq 1/4$ Efficient algorithm: $O(n^{2.376})$ Coppersmith-Winograd

Simon's algorithm: a geometric interpretation

• Viewing $\{0,1\}^n$ as a vector space

"orthogonal" complement $s^{\perp} := \{y: y \cdot s = 0\}$

- $\mathbb{Z}_2\coloneqq \{0,1\}$ with addition and multiplication mod 2 is a field
- $\{0,1\}^n = \mathbb{Z}_2 \times \cdots \times \mathbb{Z}_2 = \mathbb{Z}_2^n$ is an *n*-dimensional vector space over \mathbb{Z}_2
- Let $x \cdot y = x_1y_1 + \cdots + x_ny_n \mod 2$ "dot product"
 - $x \cdot y = 0$ can be interpreted as the vectors being "orthogonal" (Not precise: e.g., $\exists x \neq 0, x \cdot x = 0$)

• O(n) independent samples determines s with constant probability

Recap: quantum speedups

Black-box problem	Classical	Randomized	Quantum
	deterministic	$\Omega(1)$ prob.	
Deutsch	2 (queries)	2 (queries)	1 (query)
(1-bit constant vs. balanced)			
Deutsch-Josza	$2^{n-1} + 1$	$\Omega(n)$	1
(<i>n</i> -bit constant vs. balanced)			Exact
Simon	$2^{n-1} + 1$	$\Omega(\sqrt{2^n}) < $	$\rightarrow 0(n)$
			$\Omega(1)$ prob.

exponential speed up

Exercise: amplifying the success probability
• How to find s with probability
$$\geq 1 - 2^{-n}$$
?
• How many quantum queries will be needed?
• $T: I - \varepsilon$ = $P_{i}L^{corul}$ TADIS]. $P_{i}\varepsilon > TADIS$
• $P_{i}CODMTAIS$
• $P_{i}CODMTAIS$
• $P_{i}CODMTAIS$
• $P_{i}Shicl$ = $I - (I - \varepsilon)^{m}$
• $P_{i}Shicl$ = $I - (I - \varepsilon)^{m}$

Reversible computation

Quantum vs. classical computation

- We've seen a few examples where quantum algorithms outperform classical ones → quantum computer is powerful
- But, wait a second, we haven't even justified a basic goal ...

Is a quantum computer (at least) as powerful as a classical computer?

i.e. can an arbitrary efficient classical algorithm (circuit) be converted to an efficient quantum algorithm (circuit)?

Not immediate, quantum ckt (w.o. meas.) is unitary -> reversible

$$|\psi\rangle$$
 _____U[†] ____ $|\psi\rangle$

Def. A Boolean gate is reversible if it has the same input / output size, and the input to output mapping is a bijection.

• Fact. {AND, NOT} gates are universal for classical circuits

Quantum circuit $U_f: |x\rangle |y\rangle \mapsto |x\rangle |y \oplus f(x)\rangle \quad |U_f| = 2|RC_f| + m$

$$|C_f| = k - |RC_f| = O(k) - |U_f| = O(k)$$

Corollary. BPP \subseteq **BQP** More to come in future] Any problem that a classical computer can solve efficiently can be solved on a quantum computer efficiently too

Logistics

• HW3 due Sunday

- Project
 - Project page: instructions and suggested topics
 - Send me your group information by end of today (April 24 11:59pm AoE).
 - Proposal due next Sunday May 3rd , I I:59pm AoE.
 - Ask for feedback and start brainstorming (e.g., Campuswire private chat rooms)
 - End of today's lecture: group discussion

Project discussion

- Quantum algorithms
 - List 3 major algorithm design directions
 - What is the prospect of the timeline for quantum algorithms?
- Quantum computing architecture
 - List three major considerations facing a quantum architecture design
- Quantum programming
 - What is the focus of current effort and what future effort would be needed?
- Verification
 - What are the different levels of verification? What tools are needed?

Scratch 28