
S’20 CS 410/510

Intro to
quantum computing

F, 04/24/2020

Week 4

Fang Song

Portland State U

• Simon’s algorithm
• Reversible computation

Credit: based on slides by Richard Cleve

Exercise: Hadamard

1

1. What is !" ≔ !!?

3. Let $ = &
"' ∑)∈ +,& ' |.⟩. What is !⊗1|$⟩?

2. What is the matrix form of !⊗" ≔ !⊗!?
I

H ft HEH EEE tax

1102 11 H E 4 4 xy
t

147 I 1 7 Hank d n Eyesore.snVlY7XC0,133

H 3147 H 3
Y Y 1 44 thymod

xxx
i

Asymptotic notations

2

! ⋅ , Ω ⋅ , Θ ⋅ , & ⋅ , '(⋅)
Notation Definition Think Example

*(+) = !(-(+)) ∃/ > 0, +2 > 0, ∀+ > +2:
0 ≤ *(+) ≤ /-(+)

Upper bound 100+7 = !(+8)

*(+) = Ω(-(+)) ∃/ > 0, +2 > 0, ∀+ > +2:
0 ≤ /-(+) ≤ *(+)

Lower bound 100+7 = Ω(+9.;)

*(+) = Θ(-(+)) *(+) = !(-(+))
& *(+) = Ω(-(+))

Tight bound log +!
= Θ(+ log +)

& ⋅ , '(⋅) Strict upper/lower
bound

+7 = & 2A
+7 = ' log +

0

The11 constant tooo 3 4

3

Reflection on Deutsch-Josza

0,1 $ 0
0,1 $ 1

constant

0

1
balanced

Given: black-box %: 0,1 $ → {0,1} either constant or balanced
• constant means % * = 0 for all *, or % * = 1 for all *
• balanced means S* % * = 2$-.

Goal: decide which case

§Consider all %: 0,1 $ → {0,1}
• # of constant functions

• # of balanced functions

• Total # of functions

§ This is called a Promise problem

3
1

2

70 23 8 184 s p g
70256 22h

o ff 1 28 256cool 2 z ztell

4

Reflection on Deutsch-Josza

! ∝
±$

%∈ ',) *
|,⟩ , . constant

orthogonal to (±$
%
|,⟩), . balanced

|1ñ

|0ñ > >
|0ñ > >
|0ñ > >

>

⋮ ⋮@A

|!ñ

How to distinguish between the two cases?
What is >⊗C ! ?
• Constant: >⊗D ! = ±|00…0⟩
• Balanced: >⊗D ! ∈ (±|00…0⟩)H

I 107

ixton

5

Simon’s algorithm

Quantum vs. classical separations

6

Black-box problem Classical
deterministic

Randomized
Ω(1) prob.

Quantum

Deutsch

(1-bit constant vs. balanced)

2 (queries) 2 (queries) 1 (query)

Deutsch-Josza

(&-bit constant vs. balanced)

2'() + 1 Ω(&) 1
Exact

Simon 2'() + 1 Ω(2') O(&)
Ω(1) prob.

Simon’s problem

Given: a black-box function !: 0,1 & → 0,1 &
• Promise: there exists secret (≠ 0& such that

∀+ ≠ +, ∈ 0,1 &, ! + = ! +, iff. + ⊕ +, = (
Goal: find secret string (.

7

Example. + !(+)
000
001
010
011
100
101
110
111

011
101
000
010
101
011
010
000 What is (in this case? ________

+ !(+)
+2, +2 ⊕ (
+3, +3 ⊕ (

…
+5, +5 ⊕ (

…

O

E
I 010 101

Classical algorithms for Simon

§ Search for a collision: an ! ≠ # such that $ (!) = $ (#)
• Choose !(, !*, … , !, ∈ 0,1 0 randomly (independently)

• For all 1 ≠ 2, if $!3 = $!4 , then output !3 ⊕ !4 and halt

8

§A hard case: 6 is chosen at random & $(!) is chosen randomly subject
to the structure implied by 6

§Birthday bound: 7 = Θ(20) to see a collision with constant (e.g.,
3/4) probability

§ This strategy is essentially optimal. (NB. You have to rule out all
possible randomized algorithms)

$! $(!)

A quantum algorithm for Simon

9

Recall: quantum black-box function
Unitary !": $ % ↦ $ |% ⊕) $ ⟩

|0⟩ , ,
, ,

, ,
,

⋮ ⋮!"
|0⟩

|0⟩
|1⟩

|0⟩ , ,
, ,

, ,
⋮ ⋮

|0⟩

|0⟩
|0⟩

|0⟩ ⋮

/

/

%

!"

!"
/

/
|$⟩
|%⟩

|$⟩
|% ⊕)($)⟩

Deutsch-Josza Simon’s quantum
sampling subroutine

inputregister

outputregister

0

Simon’s algorithm

10

1. Run Simon’s quantum sampling subroutine ! times.
Obtain samples "#, … , "&

2. Post-processing.
Solving linear system to find '

|0⟩ + +
+ +

+ +
⋮ ⋮

|0⟩

|0⟩
|0⟩

|0⟩ ⋮

-

-

"

./

Theorem. ! = 1 - quantum queries
suffice to find ' w. prob. ≥ 1/4.

Classical

Simon’s algorithm: analysis

11

1. Run Simon’s quantum sampling subroutine ! times.
Obtain samples "#, … , "&

2. Classical post-processing on {"(}.
Solving linear system to find *

|0⟩ . .
. .

. .
⋮ ⋮

|0⟩

|0⟩
|0⟩

|0⟩ ⋮

0

0

"

12a What do the samples "(tell us?
How many samples are needed?b

Remarks on notations
• 3", 45, 61 usually denotes multiplication (integers, complex numbers, matrices)
• Strings 3, " ∈ 0,1 9, 3 ⋅ " denotes dot product, i.e., sum of bit-wise mult. mod 2

(for single bit: 3 + " mod 2 = 3 ⊕ ", 3 ⋅ " = 3")
• Concatenation 3||"

C191M

O

Simon’s algorithm: analysis I

12

|0⟩ $ $
$ $

$ $
⋮ ⋮

|0⟩

|0⟩
|0⟩

|0⟩ ⋮

&

&

'

()

a What do the samples '* tell us?
1 2 43

he Ix ooo

10 10

71 1107

E 1 71047

Yz E Bf 1 7157
Bf X ly thx lY Egg 2 1 31 fix

Simon’s algorithm: analysis I

12

|0⟩ $ $
$ $

$ $
⋮ ⋮

|0⟩

|0⟩
|0⟩

|0⟩ ⋮

&

&

'

()

a What do the samples '* tell us?
1 2 43

he Ix ooo

Tz Ex Ix H
3meas
bottom Observe h P PosteriorState
h qubits 1Hats

which terms contribute to a

i e f Ica Xa Xa S

Bf Ix ly HH lY tD dxa tlxa s7 la
XLTt

Simon’s algorithm: analysis I

12

|0⟩ $ $
$ $

$ $
⋮ ⋮

|0⟩

|0⟩
|0⟩

|0⟩ ⋮

&

&

'

()

a What do the samples '* tell us?
1 2 43 3meas

bottom Observe h P PosteriorState
henbits acso.IM 2nifzClXa7tlXaDD

A
1 IH nixa H lXa s

T.tn Es.iiiE t.E.in
Bf lx7ly7Hlx3lYtOtxDEyf zceyxaYc

yxats'T y
H Ix's Ey1114D YE 13h

Simon’s algorithm: analysis I

12

|0⟩ $ $
$ $

$ $
⋮ ⋮

|0⟩

|0⟩
|0⟩

|0⟩ ⋮

&

&

'

()

a What do the samples '* tell us?
1 2 43 Ekiti't Hy

YE 13h

2
Tescozzh

Y

ay PaY Ya T

1 TT

teriostateBflx7ly71 7lxS1yO cxD

H Ix's Eyukky

Simon’s algorithm: analysis I

12

|0⟩ $ $
$ $

$ $
⋮ ⋮

|0⟩

|0⟩
|0⟩

|0⟩ ⋮

&

&

'

()

a What do the samples '* tell us?
1 2 43 dy PaY fats T

1 TT teriostate
m

Prey Hyp I fuk 4912

Hats y xa.y.es
2 I t e5212

2 I I c IssY12

Simon’s algorithm: analysis I

12

|0⟩ $ $
$ $

$ $
⋮ ⋮

|0⟩

|0⟩
|0⟩

|0⟩ ⋮

&

&

'

()

a What do the samples '* tell us?
1 2 43 dy c y Y Y

5 obsTpposterstate

Pily3 l2y12 Inti11 ci5Yl2OCase1
y.s_yl2y1Z_OCXatOs1Y xa.y s.y

case Y 5 0 kyT
what y we can see

y 5 0 arandomy

Simon’s algorithm: analysis II

13

How many samples are needed?b

!"" !"# … !"%!#"
⋮
!'"

!##
⋮
!'#

…
⋱
…

!#%
⋮
!'%

)"
)#
⋮
)%

=
0
0
⋮
0

!" ⋅) = 0
!# ⋅) = 0

…
!' ⋅) = 0

⇔

Fact. When . = / − 1, unique solution) with prob. ≥ "
3Pr !", … , !%7" linearly indep. ≥ 1/4

Efficient algorithm: C(/#.EFG) Coppersmith-Winograd

Simon’s algorithm: a geometric interpretation

14

§Viewing 0,1 $ as a vector space
• ℤ& ≔ 0,1 with addition and multiplication mod 2 is a field
• 0,1 $ = ℤ&×⋯×ℤ& = ℤ&$ is an +-dimensional vector space over ℤ&

§ Let , ⋅ . = ,/./ + ⋯,$.$ mod 2 “dot product”
• , ⋅ . = 0 can be interpreted as the vectors being “orthogonal” (Not precise: e.g.,
∃, ≠ 0, , ⋅ , = 0)

7

.8
“orthogonal” complement

79 ≔ {.: . ⋅ 7 = 0}

79
• Quantum sampling subroutine samples from 79

uniformly at random
• =(+) independent samples determines 7 with

constant probability

Recap: quantum speedups

15

Black-box problem Classical
deterministic

Randomized
Ω(1) prob.

Quantum

Deutsch

(1-bit constant vs. balanced)

2 (queries) 2 (queries) 1 (query)

Deutsch-Josza

(&-bit constant vs. balanced)

2'() + 1 Ω(&) 1
Exact

Simon 2'() + 1 Ω(2') O(&)
Ω(1) prob.

c

e nativespeedup

Exercise: amplifying the success probability

16

§How to find ! with probability ≥ 1 − 2&'?
§How many quantum queries will be needed?

((*) queries
to ,-

! w.p.≥ 1/4 biased ft EEE IFI.IEa7 i us pr ztauD
precontevmTails

A 2 m
Oa indep C c M

Goat see at least one HEADS prance I d Gm
BAIL all to 44 in T

E Y in n

17

Reversible computation

Quantum vs. classical computation

18

§We’ve seen a few examples where quantum algorithms
outperform classical ones à quantum computer is powerful

§But, wait a second, we haven’t even justified a basic goal …
Is a quantum computer (at least) as powerful as a

classical computer?
i.e. can an arbitrary efficient classical algorithm (circuit)

be converted to an efficient quantum algorithm (circuit)?
§Not immediate, quantum ckt (w.o. meas.) is unitary è reversible

! !"|$⟩ |$⟩ ∧
'

0)
?

19

Simulating classical circuit

§Consider !: 0,1 & → 0,1 (Ex. !)*,)+ =)* +)+ mod 2(, 2 = 23

452 3) !())

Classical circuit

85
2

3
|)⟩ |)⟩

|;⟩ |; ⊕ !())⟩
Quantum Unitary circuit

>45
2

ℓ 2 + ℓ −3

3) !())

Classical Reversible circuit

0ℓ
“ancilla”

A())
“garbage”

1 2

0

20

1. Making classical circuit reversible

!"# $% &(%)

Classical circuit

)!"
#

ℓ # + ℓ −$

$% &(%)

0ℓ .(%)
“garbage”

1

§Def. A Boolean gate is reversible if it
has the same input / output size, and
the input to output mapping is a
bijection.

/

0 ⊕ / ∧ 3

/
3 3
0

Toffoli gate
(controlled-controlled NOT)
“flip 0 iff. Both / and 3 are 1”

0,134 0,13
t t

I

21

1. Making classical circuit reversible

!"# $% &(%)

Classical circuit

)!"
#

ℓ # + ℓ −$

$% &(%)

0ℓ .(%)
“garbage”

1

§ Fact. {AND, NOT} gates are universal for classical circuits
• NOT is reversible
• Can we simulate AND by Toffoli?

;

; ∧ =

;
= =

0
∧

;
; ∧ == ⇒

“ancilla”

“garbage”

I

22

1. Making classical circuit reversible

!"# $% &(%)

Classical circuit

)!"
#

ℓ # + ℓ −$

$% &(%)

0ℓ .(%)
“garbage”

1

Replace each AND with
reversible Toffoli gadget!" = 3)!" = 4(3)

23

2. Cleaning up the junk

!"#
$

ℓ $ + ℓ −(

() *())

0ℓ .())
“garbage”

2
/#

$

(
|)⟩ |)⟩

|2⟩ |2 ⊕ *())⟩

)

0ℓ
!"# !"#45

6

6

¬ 6

6

¬

Mirror

§What does the “mirror” of !"# do? – it uncomputes

?Of
T

x

g ol
t

24

2. Cleaning up the junk

!"#
$

ℓ $ + ℓ −(

() *())

0ℓ .())
“garbage”

2
/#

$

(
|)⟩ |)⟩

|2⟩ |2 ⊕ *())⟩

)

0ℓ
!"# !"#45

*())$

ℓ

(2

(

.())
)$

0ℓℓ

(2⊕ *())

Quantum circuit /#:) 2 ↦) |2 ⊕ *) ⟩ /# = 2 !"# +(

O

O 0

O O

O Y

25

Summary

Corollary. !"" ⊆ !$" [More to come in future]
Any problem that a classical computer can solve efficiently can be
solved on a quantum computer efficiently too

%&' () *())

Classical circuit

-&
'

(
|)⟩ |)⟩

|0⟩ |0 ⊕ *())⟩
Quantum Unitary circuit

%& = 4 -& = 5(4)6%& = 5(4)

00

Logistics

§HW3 due Sunday

§ Project
• Project page: instructions and suggested topics
• Send me your group information by end of today (April 24 11:59pm AoE).
• Proposal due next Sunday May 3rd , 11:59pm AoE.
• Ask for feedback and start brainstorming (e.g., Campuswire private chat rooms)
• End of today’s lecture: group discussion

26

Project discussion

CCC report
§Quantum algorithms
• List 3 major algorithm design directions
• What is the prospect of the timeline for quantum algorithms?

§Quantum computing architecture
• List three major considerations facing a quantum architecture design

§Quantum programming
• What is the focus of current effort and what future effort would be needed?

§Verification
• What are the different levels of verification?What tools are needed?

27

28

Scratch

