

F, 04/24/2020

Week 4

- Simon's algorithm
- Reversible computation

Intro to quantum computing

S'20 CS 410/510

Fang Song

Credit: based on slides by Richard Cleve

1. What is $H^2 \coloneqq HH$?

2. What is the matrix form of $H^{\otimes 2} \coloneqq H \otimes H$?

Exercise: Hadamard

3. Let
$$|\psi\rangle = \frac{1}{\sqrt{2^3}} \sum_{x \in \{0,1\}^3} |x\rangle$$
. What is $H^{\otimes 3} |\psi\rangle$?

$O(\cdot), \Omega(\cdot), \Theta(\cdot), o(\cdot), \omega(\cdot)$

Asymptotic notations

Notation	Definition	Think	Example
f(n) = O(g(n))	$\exists c > 0, n_0 > 0, \forall n > n_0: \\ 0 \le f(n) \le cg(n)$	Upper bound	$100n^2 = O(n^3)$
$f(n) = \Omega(g(n))$	$\exists c > 0, n_0 > 0, \forall n > n_0: \\ 0 \le cg(n) \le f(n)$	Lower bound	$100n^2 = \Omega(n^{1.5})$
$f(n) = \Theta(g(n))$	f(n) = O(g(n)) & $f(n) = \Omega(g(n))$	Tight bound	$log(n!) = \Theta(n \log n)$
$o(\cdot), \omega(\cdot)$		Strict upper/lower bound	$n^{2} = o(2^{n})$ $n^{2} = \omega(\log n)$

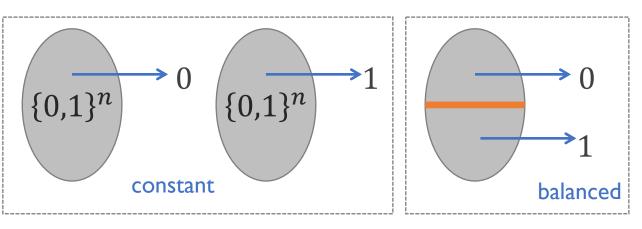
Given: black-box $f: \{0,1\}^n \rightarrow \{0,1\}$ either constant or balanced

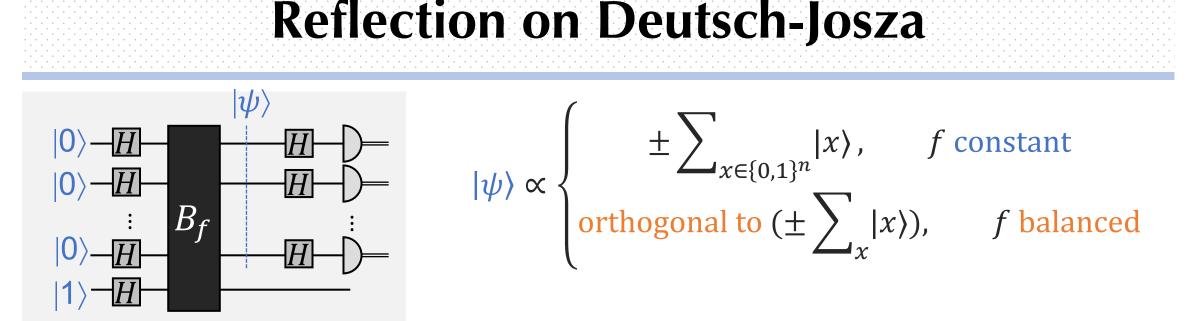
Reflection on Deutsch-Josza

- constant means f(x) = 0 for all x, or f(x) = 1 for all x
- balanced means $\Sigma_x f(x) = 2^{n-1}$

Goal: decide which case

- Consider all $f: \{0,1\}^n \rightarrow \{0,1\}$
 - # of constant functions
 - # of balanced functions
 - Total # of functions
- This is called a Promise problem





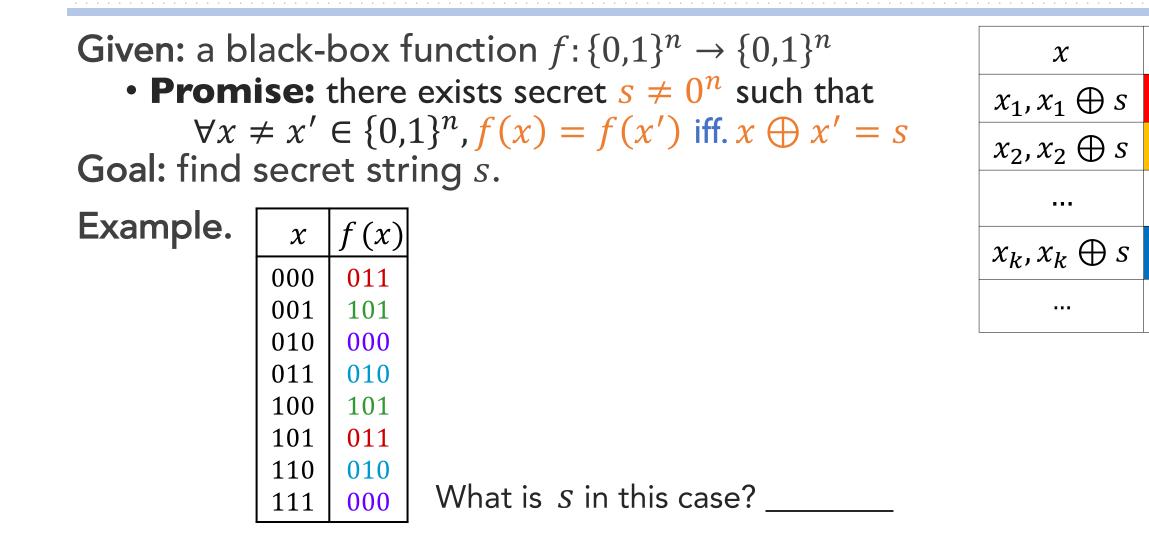
How to distinguish between the two cases? What is $H^{\otimes n} |\psi\rangle$?

- Constant: $H^{\otimes n}|\psi\rangle = \pm |00...0\rangle$
- Balanced: $H^{\otimes n} |\psi\rangle \in (\pm |00 \dots 0\rangle)^{\perp}$

Simon's algorithm

Classical Randomized Black-box problem Quantum deterministic $\Omega(1)$ prob. 2 (queries) 2 (queries) 1 (query) Deutsch (1-bit constant vs. balanced) $2^{n-1} + 1$ $\Omega(n)$ Deutsch-Josza (*n*-bit constant vs. balanced) Exact $2^{n-1} + 1$ Simon O(n) $\Omega(\sqrt{2^n})$ $\Omega(1)$ prob.

Quantum vs. classical separations



Simon's problem

f(x)

• Search for a collision: an $x \neq y$ such that f(x) = f(y)

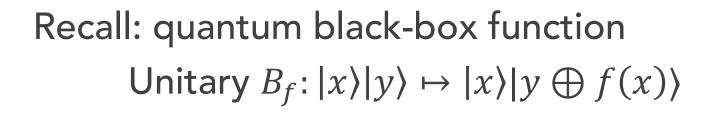
- Choose $x_1, x_2, \dots, x_k \in \{0,1\}^n$ randomly (independently)
- For all $i \neq j$, if $f(x_i) = f(x_j)$, then output $x_i \bigoplus x_j$ and halt
- A hard case: s is chosen at random & f(x) is chosen randomly subject to the structure implied by s

Classical algorithms for Simon

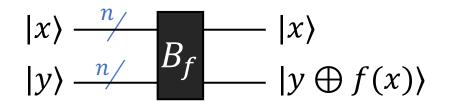
 $\boldsymbol{\chi}$

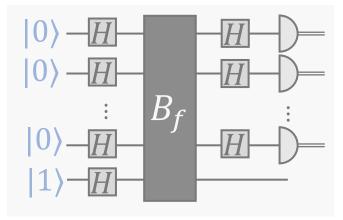
- Birthday bound: $k = \Theta(\sqrt{2^n})$ to see a collision with constant (e.g., 3/4) probability
- This strategy is essentially optimal. (NB. You have to rule out all possible randomized algorithms)

f(x)

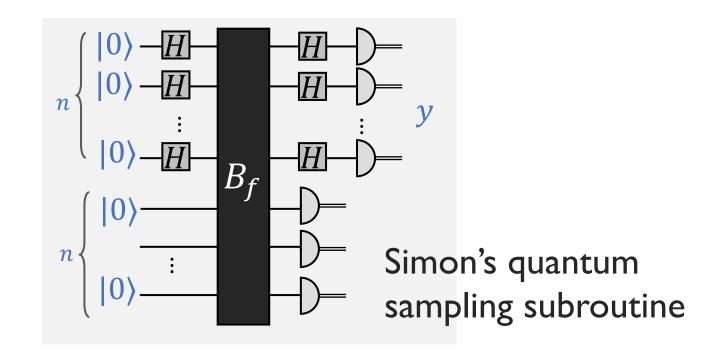


A quantum algorithm for Simon





Deutsch-Josza



1. Run Simon's quantum sampling subroutine k times.

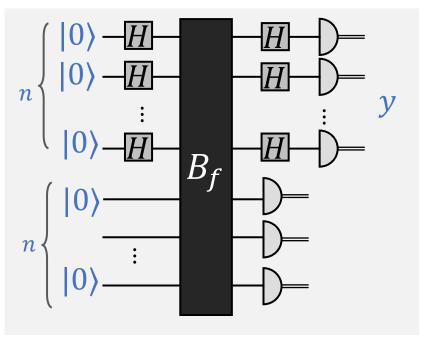
Obtain samples y_1, \ldots, y_k

Simon's algorithm

2. Post-processing.

Solving linear system to find s

Theorem. k = O(n) quantum queries suffice to find s w. prob. $\ge 1/4$.



1. Run Simon's quantum sampling subroutine k times.

Obtain samples y_1, \ldots, y_k

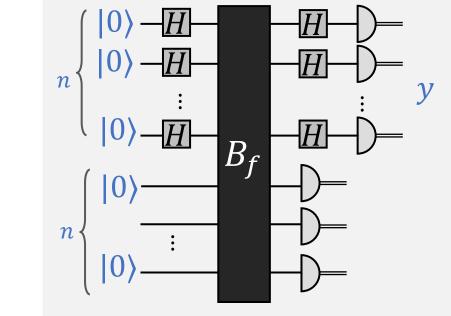
- 2. Classical post-processing on $\{y_i\}$. Solving linear system to find s
- a What do the samples y_i tell us?
- b How many samples are needed?

Remarks on notations

• $xy, \alpha\beta, AB$ usually denotes multiplication (integers, complex numbers, matrices)

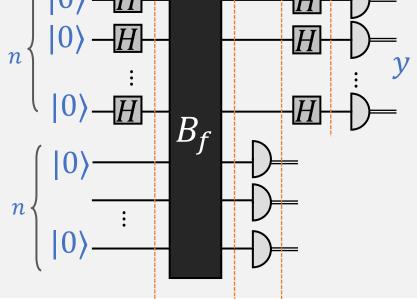
Simon's algorithm: analysis

- Strings $x, y \in \{0,1\}^n$, $x \cdot y$ denotes dot product, i.e., sum of bit-wise mult. mod 2 (for single bit: $x + y \mod 2 = x \oplus y, x \cdot y = xy$)
- Concatenation x||y



a What do the samples y_i tell us? 1 2 3 4 (0) - H - H - H - -

Simon's algorithm: analysis I



b How many samples are needed?

$$y_{1} \cdot s = 0$$

$$y_{2} \cdot s = 0$$

$$\vdots$$

$$y_{k} \cdot s = 0$$

$$(y_{11} \quad y_{12} \quad \dots \quad y_{1n})$$

$$(y_{21} \quad y_{22} \quad \dots \quad y_{2n})$$

$$\vdots$$

$$y_{k1} \quad y_{k2} \quad \dots \quad y_{kn}$$

$$(y_{k1} \quad y_{k2} \quad \dots \quad y_{kn})$$

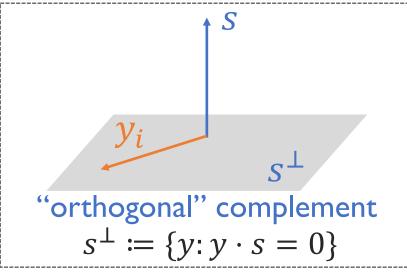
$$(y_{k1} \quad y_{k2} \quad \dots \quad y_{kn})$$

Simon's algorithm: analysis II

Fact. When k = n - 1, unique solution *s* with prob. $\geq \frac{1}{4}$ Pr[y_1, \dots, y_{n-1} linearly indep.] $\geq 1/4$ Efficient algorithm: $O(n^{2.376})$ Coppersmith-Winograd

Simon's algorithm: a geometric interpretation

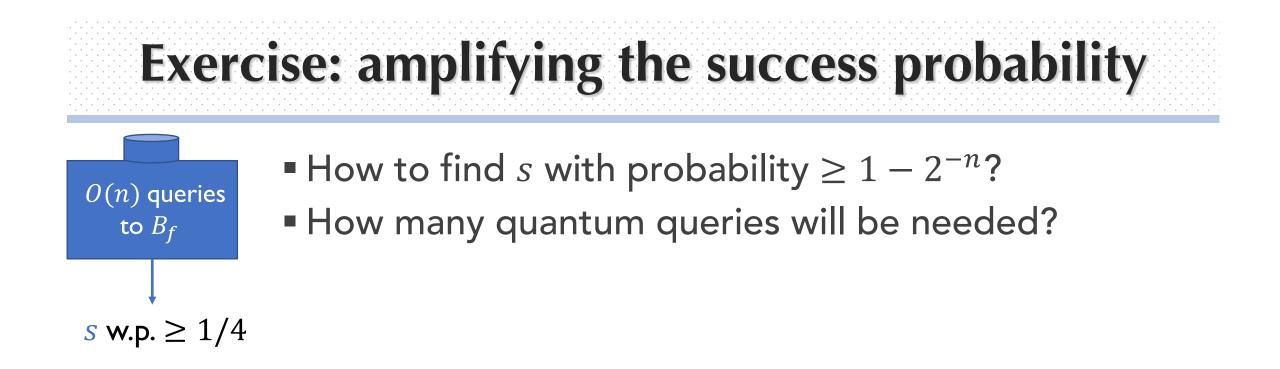
- Viewing $\{0,1\}^n$ as a vector space
 - $\mathbb{Z}_2 \coloneqq \{0,1\}$ with addition and multiplication mod 2 is a field
 - $\{0,1\}^n = \mathbb{Z}_2 \times \cdots \times \mathbb{Z}_2 = \mathbb{Z}_2^n$ is an *n*-dimensional vector space over \mathbb{Z}_2
- Let $x \cdot y = x_1y_1 + \cdots + x_ny_n \mod 2$ "dot product"
 - $x \cdot y = 0$ can be interpreted as the vectors being "orthogonal" (Not precise: e.g., $\exists x \neq 0, x \cdot x = 0$)



- Quantum sampling subroutine samples from s^{\perp} uniformly at random
- O(n) independent samples determines s with constant probability

Classical Randomized Black-box problem Quantum deterministic $\Omega(1)$ prob. 2 (queries) 2 (queries) 1 (query) Deutsch (1-bit constant vs. balanced) $2^{n-1} + 1$ Deutsch-Josza $\Omega(n)$ (*n*-bit constant vs. balanced) Exact $2^{n-1} + 1$ Simon O(n) $\Omega(\sqrt{2^n})$ $\Omega(1)$ prob.

Recap: quantum speedups



Reversible computation

■We've seen a few examples where quantum algorithms outperform classical ones → quantum computer is powerful

Quantum vs. classical computation

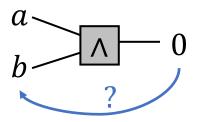
But, wait a second, we haven't even justified a basic goal ...

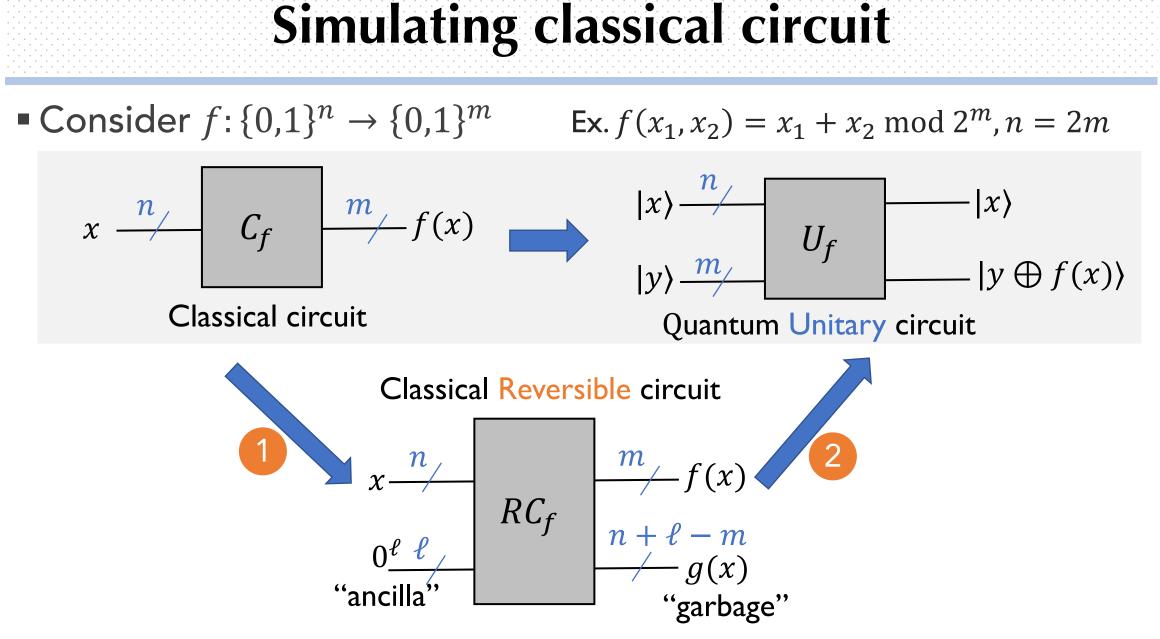
Is a quantum computer (at least) as powerful as a classical computer?

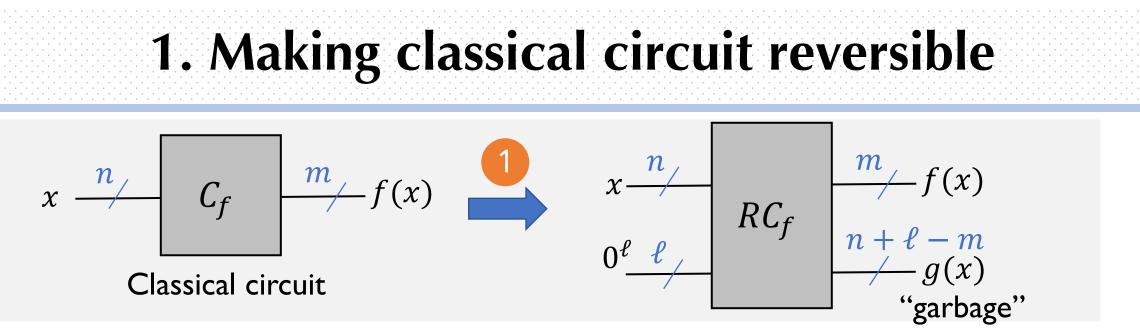
i.e. can an arbitrary efficient classical algorithm (circuit) be converted to an efficient quantum algorithm (circuit)?

Not immediate, quantum ckt (w.o. meas.) is unitary -> reversible

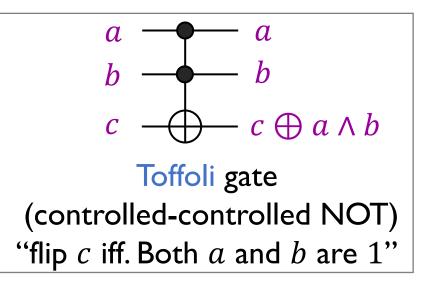
$$|\psi
angle - U - U^{\dagger} - |\psi
angle$$

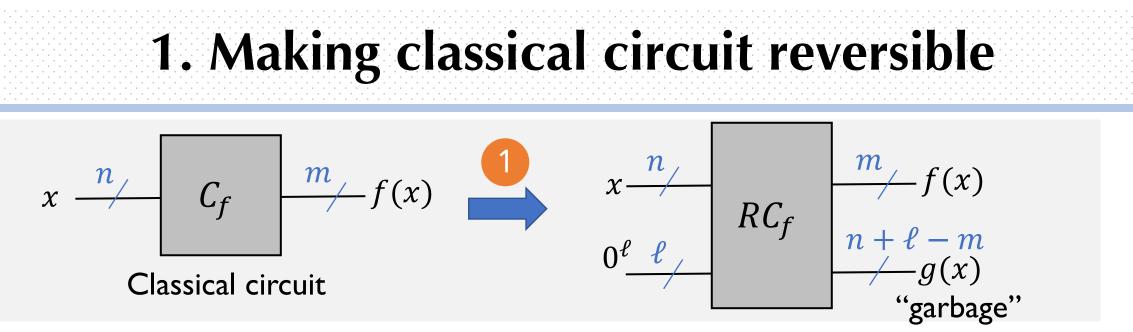






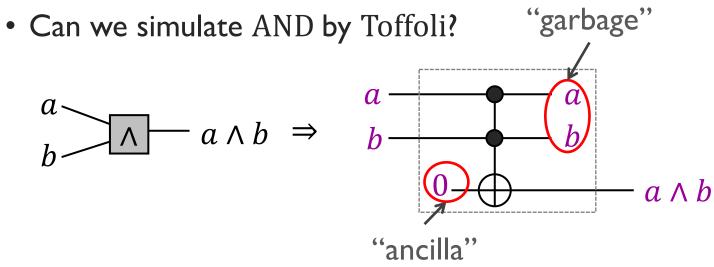
 Def. A Boolean gate is reversible if it has the same input / output size, and the input to output mapping is a bijection.

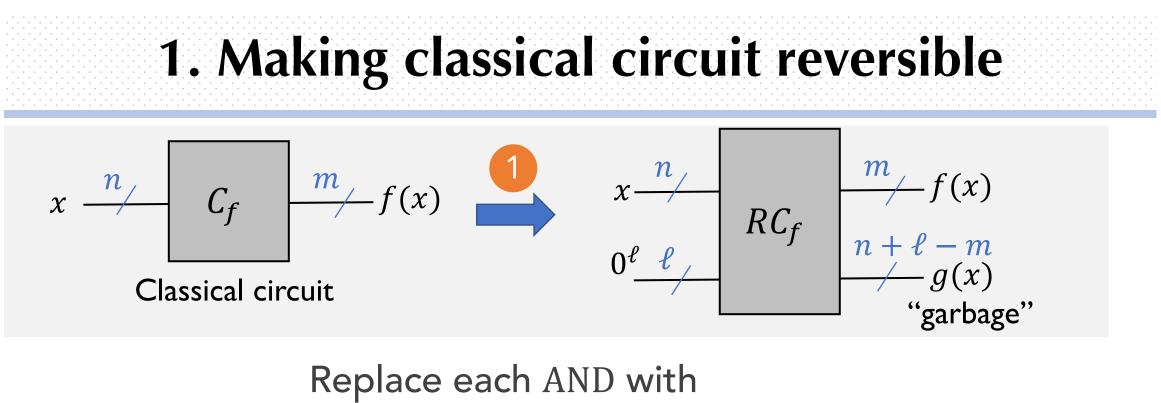




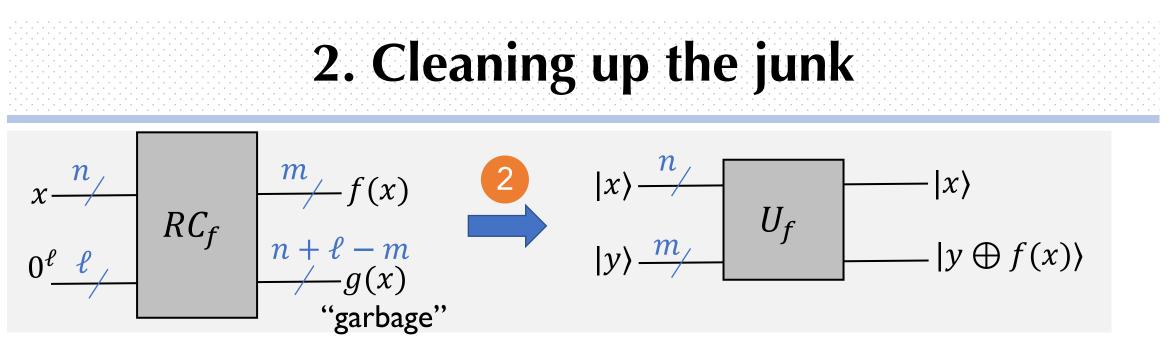
Fact. {AND, NOT} gates are universal for classical circuits

• NOT is reversible

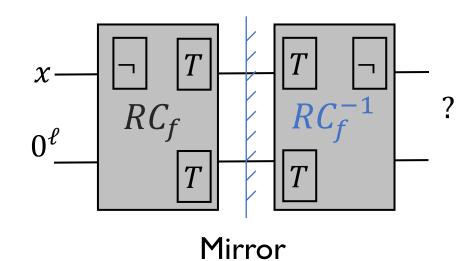


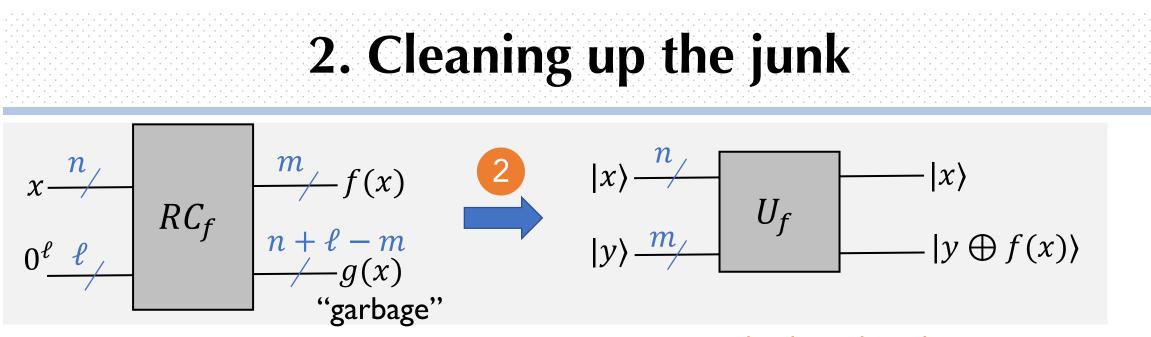


Replace each AND with reversible Toffoli gadget $|RC_f| = O(k)$

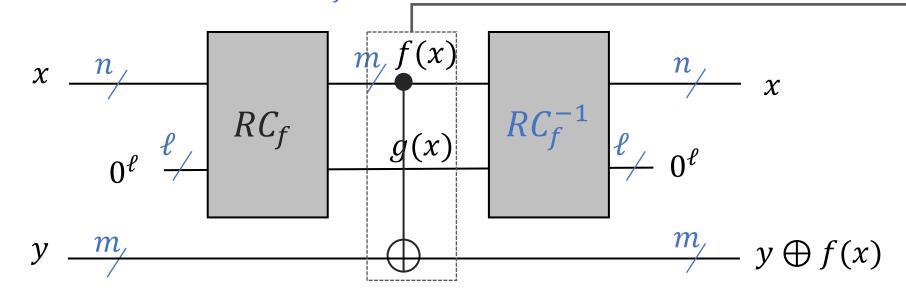


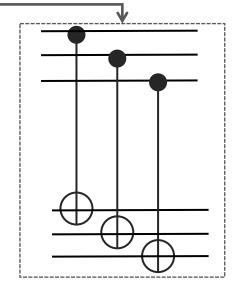
• What does the "mirror" of RC_f do? – it uncomputes

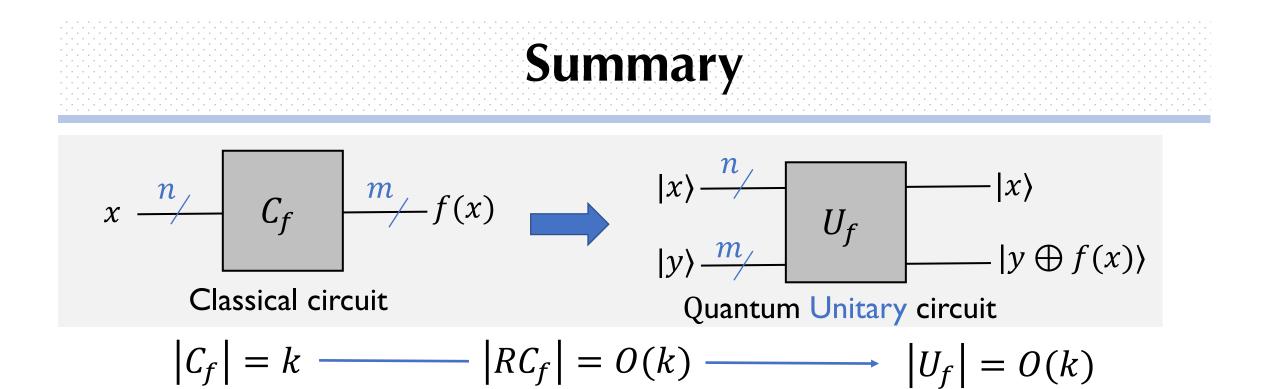




Quantum circuit $U_f: |x\rangle |y\rangle \mapsto |x\rangle |y \oplus f(x)\rangle$ $|U_f| = 2|RC_f| + m$







Corollary. BPP \subseteq **BQP** [More to come in future] Any problem that a classical computer can solve efficiently can be solved on a quantum computer efficiently too

Logistics

• HW3 due Sunday

Project

- Project page: instructions and suggested topics
- Send me your group information by end of today (April 24 11:59pm AoE).
- Proposal due next Sunday May 3rd, 11:59pm AoE.
- Ask for feedback and start brainstorming (e.g., Campuswire private chat rooms)
- End of today's lecture: group discussion

Project discussion

- Quantum algorithms
 - List 3 major algorithm design directions
 - What is the prospect of the timeline for quantum algorithms?
- Quantum computing architecture
 - List three major considerations facing a quantum architecture design
- Quantum programming
 - What is the focus of current effort and what future effort would be needed?
- Verification
 - What are the different levels of verification? What tools are needed?

Scratch