S'20 CS 410/510

Intro to quantum computing

Fang Song

Week 3

- Quantum postulates
- Distinguishing quantum states
- Deutsch / Deutsch-Josza algorithms

Credit: based on slides by Richard Cleve

Exercise

Input	Output
$\|00\rangle$	$?$
$\|01\rangle$	$?$
$\|00\rangle$	$?$
$\|01\rangle$	$?$

Logistics

- HW2 due Sunday
- Remarks
- Campuswire: support markdown and LaTeX (e.g., \$\$e^\{iH\}\$\$=e $e^{i H}$);
- Campuswire: stay informed, settings \rightarrow notifications \rightarrow digest messages
- Youtube playlist: read the description (e.g., time stamps)
- Project: discussion at end of class

Postulates of quantum theory

1. States
2. Operations (dynamics)
3. Measurement

GRAMMAR

4. Composite systems

Quantum circuit model (quantum computer)

Postulate 1: quantum states

- n-qubit system \Leftrightarrow (Hilbert) state space: $\mathbb{C}^{2^{n}}=\left(\mathbb{C}^{2}\right)^{\otimes n}$
- Computational (standard) basis: $\left\{|x\rangle: x \in\{0,1\}^{n}\right\}$
- Quantum state: 2^{n}-dim. unit vector $\forall x \in\{0,1\}^{n}, \alpha_{x} \in \mathbb{C}, \sum_{x}\left|\alpha_{x}\right|^{2}=1$
$\left(\begin{array}{l}\alpha_{000} \\ \alpha_{001} \\ \alpha_{010} \\ \alpha_{011} \\ \alpha_{100} \\ \alpha_{101} \\ \alpha_{110} \\ \alpha_{111}\end{array}\right)=\sum_{x \in\{0,1\}^{3}} \alpha_{x}|x\rangle$
$|000\rangle=\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right)|001\rangle=\left(\begin{array}{l}0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right)|010\rangle=\left(\begin{array}{l}0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right)|011\rangle=\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right)$
$|100\rangle=\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right)|101\rangle=\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0\end{array}\right)|110\rangle=\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0\end{array}\right)|111\rangle=\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1\end{array}\right)$
$n=3$

Postulate 2: operations

- System evolution \Leftrightarrow Unitary transformation $\left|\psi_{1}\right\rangle=U\left|\psi_{0}\right\rangle$
- If you are really curious of the physics:
H :Hamiltonian of the system, a Hermitian matrix $\left(H=H^{\dagger}\right)$
Schrodinger's equation: $i \frac{d|\psi(t)\rangle}{d t}=H|\psi(t)\rangle$
$\rightarrow|\psi(t)\rangle=e^{-i H t}|\psi(0)\rangle . U:=e^{-i H t}$ Unitary.

Postulate 3: measurements

- Standard measurement (in computational basis)

$$
|\psi\rangle=\sum_{x \in\{0,1\}^{n}} \alpha_{x}|x\rangle-D=\begin{array}{ccc}
\text { See } & \text { w. probability } & \text { posterior state } \\
x & \left|\alpha_{x}\right|^{2} & |x\rangle
\end{array}
$$

- Geometric picture: projection
$\operatorname{Pr}($ observe $x)=\left|\alpha_{x}\right|^{2}=|\langle x \mid \psi\rangle|^{2}$

Measuring in an orthonormal basis

- Recall: orthonormal basis of $\mathbb{C}^{d}\left\{\left|e_{j}\right\rangle: j=1, \ldots, d\right\}$
- $\forall j, \|\left|e_{j}\right\rangle \|=1$
- $\forall i \neq j,\left\langle e_{i} \mid e_{j}\right\rangle=0$

See w/ probability posterior state
Measure $|\psi\rangle$ in $\left\{\left|e_{j}\right\rangle\right\} \mapsto j \quad\left|\left\langle e_{j} \mid \psi\right\rangle\right|^{2}$
$\left|e_{j}\right\rangle$
j is merely a label of $\left|e_{j}\right\rangle$

Measuring in an orthonormal basis

See w/ probability posterior state
Measure $|\psi\rangle$ in $\left\{\left|e_{j}\right\rangle\right\} \mapsto \quad j$
$\left|\left\langle e_{j} \mid \psi\right\rangle\right|^{2}$
$\left|e_{j}\right\rangle$

Ex. Measure in $\{|+\rangle,|-\rangle\}$
See w/ probability
posterior state

Implement measurement in arb. basis

Theorem. Meas. in any $\left\{\left|e_{j}\right\rangle\right\} \equiv$ Unitary + standard meas.

- Measure in $\{|+\rangle,|-\rangle\}$

$$
|\psi\rangle=\alpha|+\rangle+\beta|-\rangle \stackrel{?}{\rightarrow} \alpha|0\rangle+\beta|1\rangle
$$

- General case: measure in $\left\{\left|e_{j}\right\rangle\right\}$

$$
U:\left|e_{j}\right\rangle \mapsto|j\rangle \quad U=\sum_{j}|j\rangle\left\langle e_{j}\right|
$$

Distinguishing quantum states

Cor. Orthogonal quantum states can be distinguished perfectly

- Given a qubit $|\phi\rangle \in\left\{\left|\psi_{0}\right\rangle,\left|\psi_{1}\right\rangle\right\}$ w. $\left\langle\psi_{0} \mid \psi_{1}\right\rangle=0 \quad\left|\psi_{1}\right\rangle$

- Given $|\phi\rangle \in\left|\psi_{1}\right\rangle, \ldots,\left|\psi_{k}\right\rangle \in \mathbb{C}^{d}, k \leq d . \forall i \neq j,\left\langle\psi_{j} \mid \psi_{i}\right\rangle=0$
- Complete $\left|\psi_{1}\right\rangle, \ldots,\left|\psi_{k}\right\rangle$ to an orthonormal basis $\left\{\left|\psi_{j}\right\rangle: j=1, \ldots, d\right\}$
- Measure $|\phi\rangle$ in $\left\{\left|\psi_{j}\right\rangle: j=1, \ldots, d\right\}$

Exercise

1

Hint: you will get Bell states

Exercise

(2) Show that the 4 states form an orthonormal basis for 2 qubits

Exercise

(3) Design a circuit to implement the measurement in this basis

Reflection on superdense coding \& teleportation

$a b$	$\|\psi\rangle$
00	$\|00\rangle+\|11\rangle$
01	$\|10\rangle+\|01\rangle$
10	$\|00\rangle-\|11\rangle$
11	$\|10\rangle-\|01\rangle$

Distinguish Bell states

Ex.What is the state of the top 2 qubits after the measurement?

Deutsch's algorithm

Black-box function and query model

Given: a function f as a black box (a.k.a. oracle) $x-f(x)$
Goal: determine some property about f making as few queries to f (and other operations) as possible

Example. Polynomial interpolation
Let: $f(x)=c_{0}+c_{1} x+c_{2} x^{2}+\ldots+c_{d} x^{d}$
Goal: determine $c_{0}, c_{1}, c_{2}, \ldots, c_{d}$
Question: How many f-queries does one require for this?

Answer: $d+1$

Quantum black-box function

Quantum operations need to be unitary (reversible)
(2) Not reversible

(-) Unitary

Can query in superposition

Deustch's problem

Let $f:\{0,1\} \rightarrow\{0,1\}$

There are four possibilities:

x	$f_{1}(x)$
0	0
1	0

x	$f_{2}(x)$
0	1
1	1

x	$f_{3}(x)$
0	0
1	1

x	$f_{4}(x)$
0	1
1	0

Goal: determine whether or not $f(0)=f(1)$ (i.e. $f(0) \oplus f(1)$)

- Any classical method requires two queries
- What about a quantum method?

Summary of Deutsch's algorithm

Deutsch-Josza algorithm

Deutsch-Josza problem

Let $f:\{0,1\}^{n} \rightarrow\{0,1\}$ be either constant or balanced, where

- constant means $f(x)=0$ for all x, or $f(x)=1$ for all x
- balanced means $\Sigma_{x} f(x)=2^{n-1}$

Goal: determine whether f is constant or balanced

- How many queries are there needed classically?

Deterministic algorithms. \qquad
Randomized algorithms. \qquad

Deutsch-Josza quantum algorithm

Summary of Deutsch-Josza algorithm

Scratch

