

S'20 CS 410/510

Intro to quantum computing

Fang Song

F, 04/17/2020

Week 3

- Quantum postulates
- Distinguishing quantum states
- Deutsch / Deutsch-Josza algorithms

Credit: based on slides by Richard Cleve

 $|\psi\rangle \qquad H \qquad H \qquad ?$

Input	Output
00 angle	?
01 angle	?
00 angle	?
 01 >	?

Exercise

HW2 due Sunday

- Remarks

 - Campuswire: stay informed, settings \rightarrow notifications \rightarrow digest messages

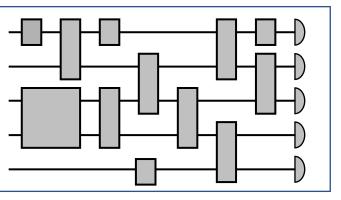
Logistics

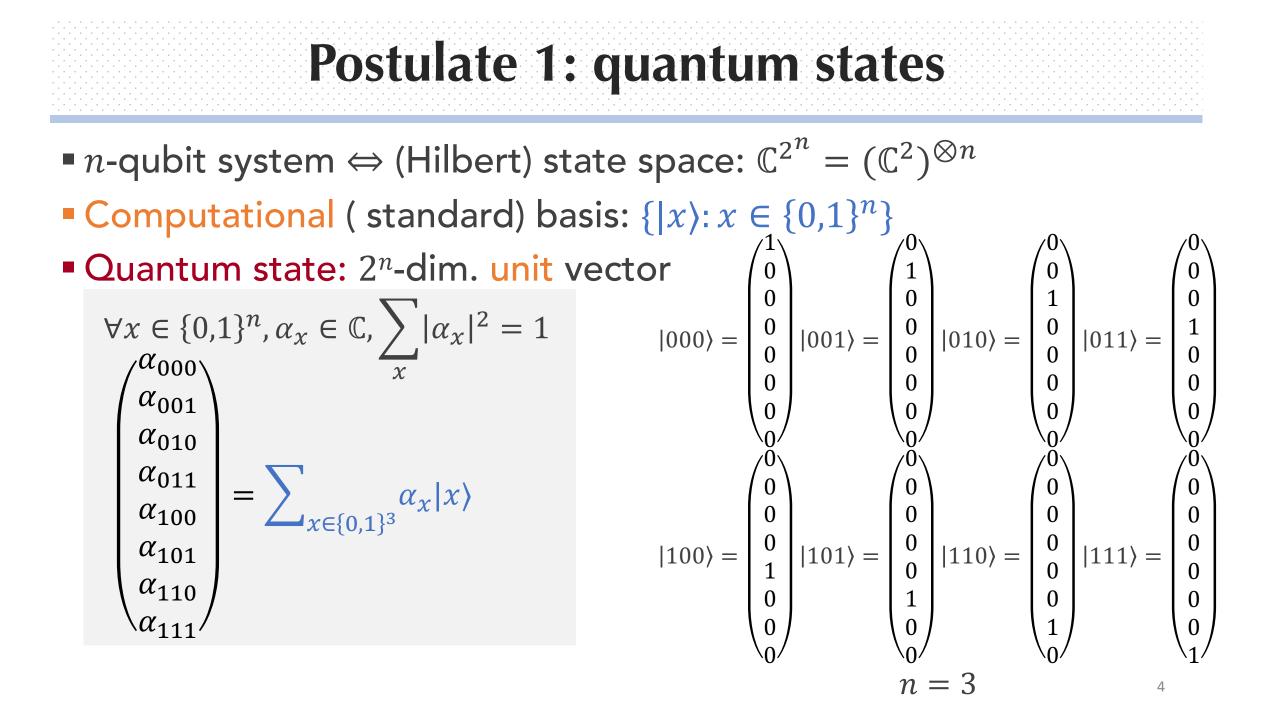
• Youtube playlist: read the description (e.g., time stamps)

Project: discussion at end of class

- 2. Operations (dynamics)
- 3. Measurement
- 4. Composite systems

Postulates of quantum theory





• System evolution \Leftrightarrow Unitary transformation $|\psi_1\rangle = U|\psi_0\rangle$

Postulate 2: operations

If you are really curious of the physics:

H: Hamiltonian of the system, a Hermitian matrix $(H = H^{\dagger})$

Schrodinger's equation:
$$i \frac{d|\psi(t)\rangle}{dt} = H|\psi(t)\rangle$$

 $\rightarrow |\psi(t)\rangle = e^{-iHt}|\psi(0)\rangle$. $U \coloneqq e^{-iHt}$ Unitary.

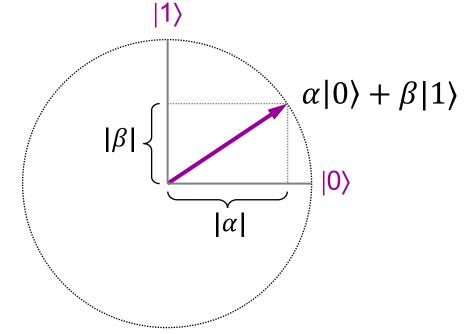
Standard measurement (in computational basis)

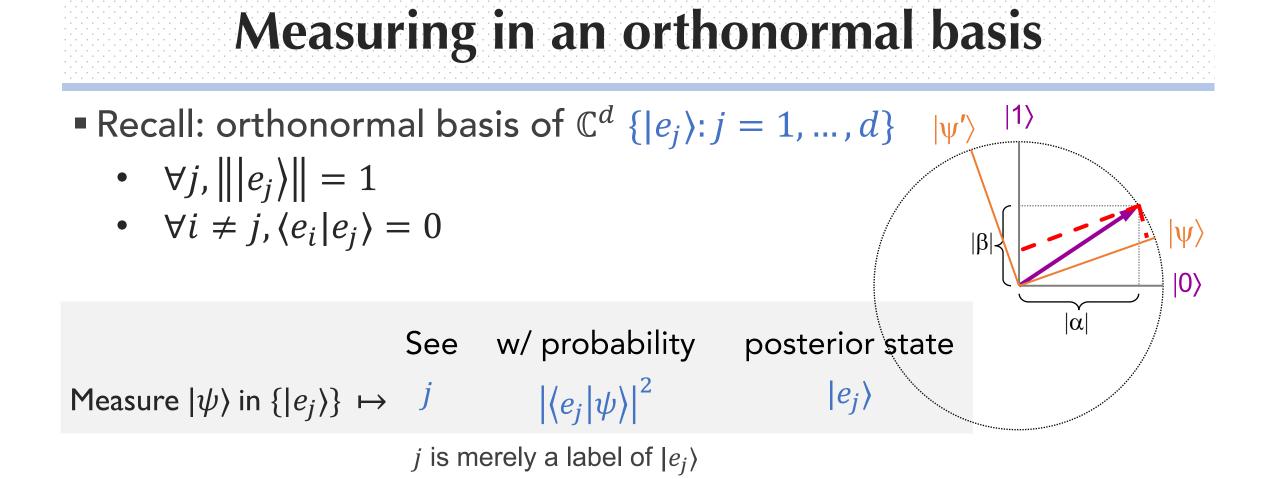
$$|\psi\rangle = \sum_{x \in \{0,1\}^n} \alpha_x |x\rangle$$

 $\sum_{x \in \{0,1\}^n} \alpha_x |x\rangle$
 $\sum_{x \in \{0,1\}^n} \alpha_x |x\rangle$
 $|\alpha_x|^2$
 $|\alpha_x|^2$
 $|x\rangle$

Postulate 3: measurements

• Geometric picture: projection $Pr(observe x) = |\alpha_x|^2 = |\langle x | \psi \rangle|^2$



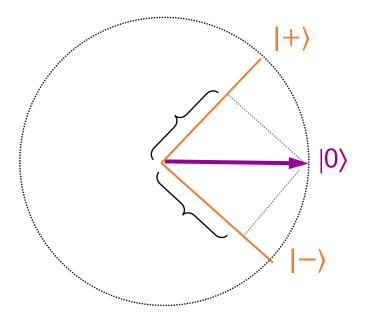




Measuring in an orthonormal basis

Ex. Measure in $\{|+\rangle, |-\rangle\}$

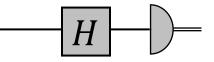
See w/ probability posterior state $|+\rangle \mapsto + |\langle+|+\rangle|^2 = 1 |+\rangle$ $- |\langle-|+\rangle|^2 = 0 |-\rangle$ $|0\rangle \mapsto + |\langle+|0\rangle|^2 = 1/2 |+\rangle$ $|\langle-|0\rangle|^2 = 1/2 |-\rangle$



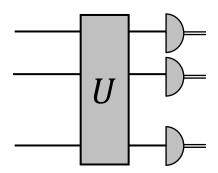
Theorem. Meas. in any $\{|e_j\rangle\} \equiv$ Unitary + standard meas.

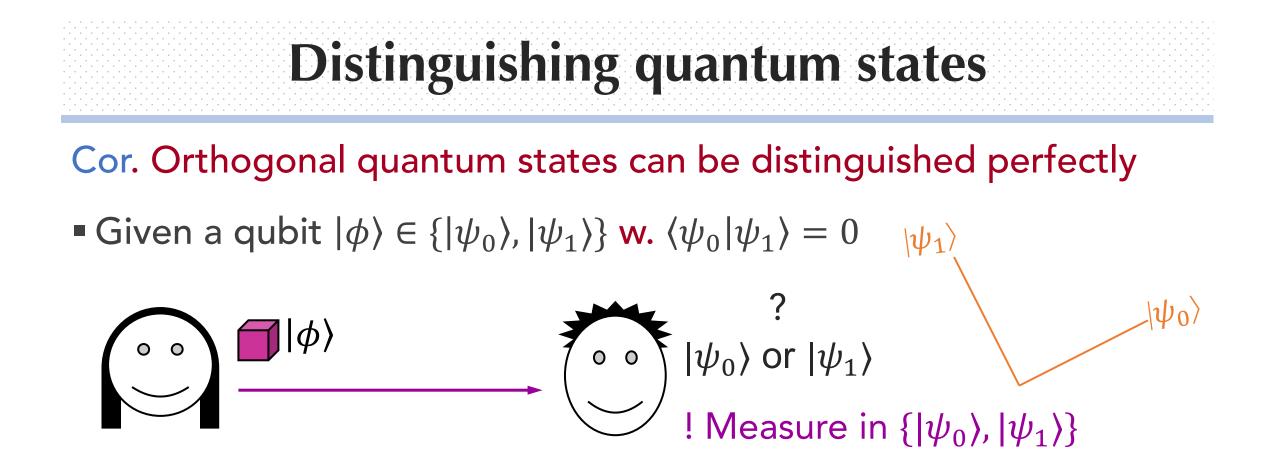
Implement measurement in arb. basis

• Measure in $\{|+\rangle, |-\rangle\}$ $|\psi\rangle = \alpha |+\rangle + \beta |-\rangle \xrightarrow{?}{\rightarrow} \alpha |0\rangle + \beta |1\rangle$



• General case: measure in $\{|e_j\rangle\}$ $U: |e_j\rangle \mapsto |j\rangle$ $U = \sum_i |j\rangle \langle e_j|$

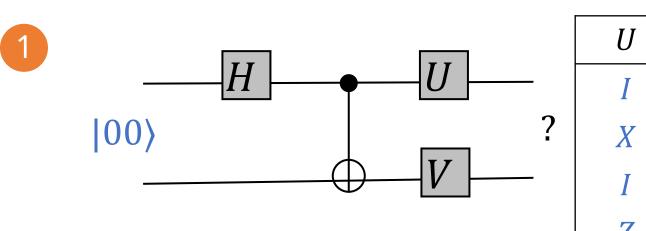


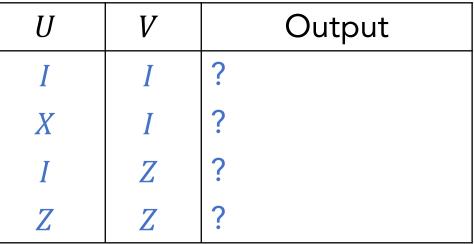


• Given $|\phi\rangle \in |\psi_1\rangle, \dots, |\psi_k\rangle \in \mathbb{C}^d, k \le d. \ \forall i \ne j, \langle \psi_j | \psi_i \rangle = 0$

• Complete $|\psi_1\rangle, ..., |\psi_k\rangle$ to an orthonormal basis $\{|\psi_j\rangle: j = 1, ..., d\}$

• Measure
$$|\phi\rangle$$
 in $\{|\psi_j\rangle: j = 1, ..., d\}$





Exercise

Hint: you will get **Bell** states

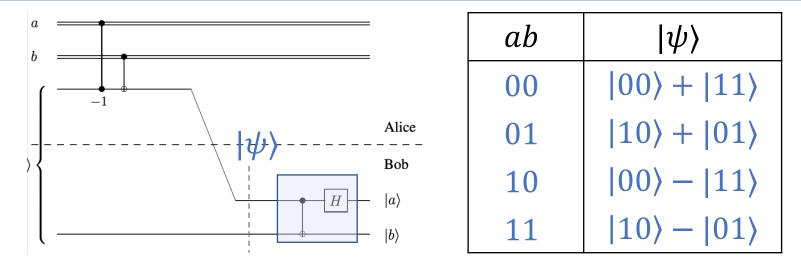
Exercise

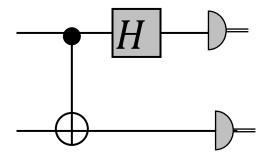
2 Show that the 4 states form an orthonormal basis for 2 qubits

Exercise

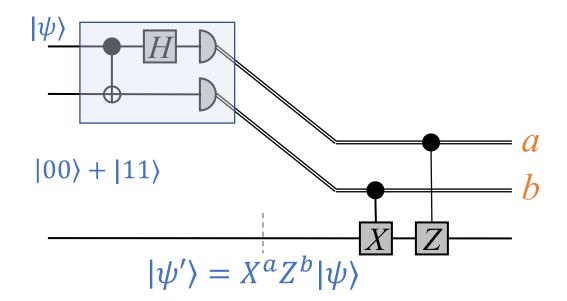
3 Design a circuit to implement the measurement in this basis

Reflection on superdense coding & teleportation





Distinguish Bell states



Ex.What is the state of the top 2 qubits after the measurement?

Deutsch's algorithm

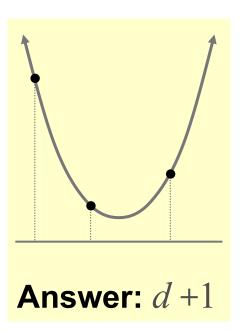
Goal: determine some property about f making as few queries to f (and other operations) as possible

Example. Polynomial interpolation

Let: $f(x) = c_0 + c_1 x + c_2 x^2 + \dots + c_d x^d$

Goal: determine c_0 , c_1 , c_2 , ..., c_d

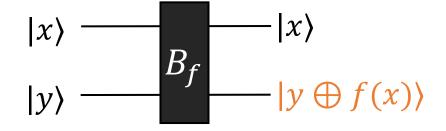
Question: How many *f*-queries does one require for this?



Quantum black-box function

$$\otimes$$
 Not reversible $|x\rangle - f - |f(x)\rangle$

🙂 Unitary



Can query in superposition

Let $f: \{0,1\} \rightarrow \{0,1\}$ ______f There are four possibilities: $\begin{array}{c|c} x & f_1(x) \\ \hline 0 & 0 \\ 1 & 0 \end{array} \begin{array}{c} x & f_2(x) \\ \hline 0 & 0 \end{array} \begin{array}{c} x & f_3(x) \\ \hline 0 & 0 \end{array} \begin{array}{c} x & f_4(x) \\ \hline 0 & 0 \end{array}$

Deustch's problem

Goal: determine whether or not f(0) = f(1) (i.e. $f(0) \oplus f(1)$)

- Any classical method requires two queries
- What about a quantum method?

extracts phase differences from produces superpositions of inputs to $f: |0\rangle + |1\rangle$ $|0\rangle + (-1)^{f(1)}|1\rangle$ H $0) \oplus f(1)$ B_f 1 constructs eigenvector so *f*-queries induce phases: $|x\rangle \rightarrow (-1)^{f(x)}|x\rangle$

Summary of Deutsch's algorithm

Deutsch-Josza algorithm

Let $f: \{0,1\}^n \rightarrow \{0,1\}$ be either constant or balanced, where

Deutsch-Josza problem

- **constant** means f(x) = 0 for all x, or f(x) = 1 for all x
- **balanced** means $\Sigma_x f(x) = 2^{n-1}$

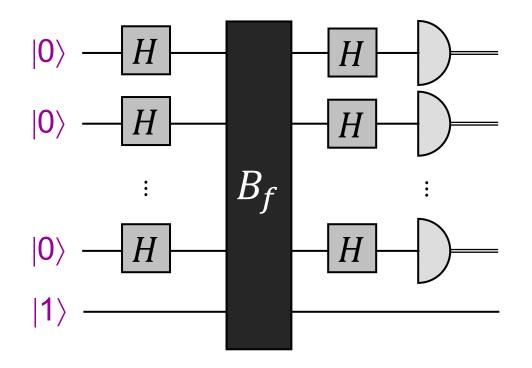
Goal: determine whether f is constant or balanced

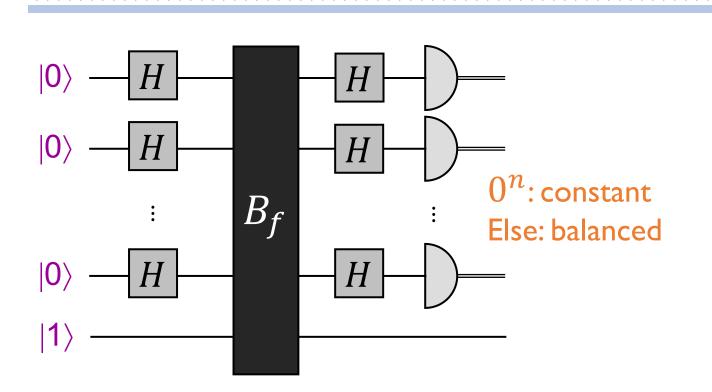
How many queries are there needed classically?

Deterministic algorithms.

Randomized algorithms.

Deutsch-Josza quantum algorithm





Summary of Deutsch-Josza algorithm

Scratch