S'20 CS 410/510

Intro to quantum computing

Fang Song

- Multiple qubits, tensor product
- Quantum circuit model
- Quantum superdense coding
- Quantum teleportation

Credit: based on slides by Richard Cleve

Logistics

- HW1 due Sunday

- Work in groups, write up individually
- Project
- Form groups of 2-3 persons by next week
- Workflow
- Work on pre-class materials: 80% success depends on it!
- In-class: practice what you studied and extend to new topics
- Post-class: review and reinforce

Review: qubit

Superposition

- Amplitudes $\alpha, \beta \in \mathbb{C},|\alpha|^{2}+|\beta|^{2}=1$
- Explicit state is $\binom{\alpha}{\beta} \in \mathbb{C}^{2}$
(2-norm / Euclidean norm = I)
- Cannot explicitly extract α and β (only statistical inference)

Dirac bra/ket notation

- Ket: $|\psi\rangle$ always denotes a column vector

Convention: $|0\rangle=\binom{1}{0},|1\rangle=\binom{0}{1}$

$$
\text { Ex. }|\psi\rangle=\left(\begin{array}{c}
\alpha_{1} \\
\alpha_{2} \\
\vdots \\
\alpha_{d}
\end{array}\right)
$$

- Bra: $\langle\psi|$ always denotes a row vector that is the conjugate transpose of $|\psi\rangle$

$$
\mathrm{Ex.}\langle\psi|=\left(\alpha_{1}^{*}, \alpha_{2}^{*}, \ldots, \alpha_{d}^{*}\right)
$$

- Inner product: $\langle\psi \mid \phi\rangle$ denotes $\langle\psi| \cdot|\phi\rangle$
- Vectors to scalar

$$
\text { Ex. }\langle 0 \mid 1\rangle=\left(\begin{array}{ll}
1 & 0
\end{array}\right)\binom{0}{1}=0
$$

- Outer product: $|\psi\rangle\langle\phi|$ denotes $|\psi\rangle \cdot\langle\phi|$
- Vectors to matrix

$$
\text { Ex. }|0\rangle\langle 1|=\binom{1}{0}\left(\begin{array}{ll}
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)
$$

Basic operations on a qubit

0 . Initialize qubit to $|0\rangle$ or to $|1\rangle$

1. Apply a unitary operation $U\left(U^{\dagger} U=I\right)$

Linear map $A \leftrightarrow$ matrix A
Apply A to $|\psi\rangle \leftrightarrow$ matrix mult. $A|\psi\rangle$

$$
\begin{array}{ccc}
X=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right), & X|0\rangle=|1\rangle, X|1\rangle=|0\rangle \\
Z=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), & Z|0\rangle=|0\rangle, Z|1\rangle=-|1\rangle \\
H=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right), & H|0\rangle=|+\rangle, H|1\rangle=|-\rangle
\end{array}
$$

Basic operations on a qubit

0. Initialize qubit to $|0\rangle$ or to $|1\rangle$
1. Apply a unitary operation $U\left(U^{\dagger} U=I\right)$
2. Perform a "standard" measurement:
|1

N.B.There exist other quantum operations, but they can all be "simulated" by the aforementioned types

A few tips

- Linearity. Let A be a linear map. Any $v_{i} \in \mathbb{C}^{d}, c_{i} \in C, i=1, \ldots, k$

$$
A\left(\sum_{i} c_{i} \cdot v_{i}\right)=\sum_{i} c_{i} \cdot A\left(v_{i}\right)
$$

$\rightarrow A$ is uniquely determined by its action on a basis

- Let $u_{1}, \ldots, u_{d} \in \mathbb{C}^{d}$ be a basis $\rightarrow \forall v \in \mathbb{C}^{d}$ can be expressed by $v=\sum_{i} c_{i} u_{i}$
- Given $A\left(u_{i}\right)=w_{i}, i=1, \ldots, d \rightarrow A v=A\left(\sum_{i} c_{i} u_{i}\right)=\sum_{i} c_{i} A\left(u_{i}\right)=\sum_{i} c_{i} w_{i}$
- When Dirac notation unclear, convert to vectors/matrices
- When Dirac notation unclear, convert to vectors/matrices

Two qubits: composed system

- Tensor product \otimes

$$
[A]_{m \times n} \otimes[B]_{k \times \ell}=\left(\begin{array}{cccc}
a_{11} B & a_{12} B & \ldots & a_{1 n} B \\
a_{21} B & a_{22} B & \ldots & a_{2 n} B \\
\vdots & \vdots & \ldots & \ldots \\
a_{m 1} B & a_{m 2} B & \cdots & a_{m n} B
\end{array}\right)_{m k \times n \ell}
$$

Two qubits: composed system

$[A]_{m \times n} \otimes[B]_{k \times \ell}=\left(\begin{array}{cccc}a_{11} B & a_{12} B & \ldots & a_{1 n} B \\ a_{21} B & a_{22} B & \ldots & a_{2 n} B \\ \vdots & \vdots & \cdots & \ldots \\ a_{m 1} B & a_{m 2} B & \cdots & a_{m n} B\end{array}\right)_{m k \times n \ell}$

Ex. $|00\rangle:=|0\rangle \otimes|0\rangle=\binom{1}{0} \otimes\binom{1}{0}=\binom{1 \cdot\binom{1}{0}}{0 \cdot\binom{1}{0}}=\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right)$

$$
|01\rangle=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right),|10\rangle=\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right),|11\rangle=\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right) \quad|\psi\rangle|\phi\rangle:=|\psi\rangle \otimes|\phi\rangle
$$

General n-qubit systems

- Probabilistic states

$$
\sum_{x}^{\forall x \in\{0,1\}^{n}, p_{x} \geq 0} p_{x}=1\left(\begin{array}{l}
p_{000} \\
p_{001} \\
p_{010} \\
p_{011} \\
p_{100} \\
p_{101} \\
p_{110} \\
p_{111}
\end{array}\right)
$$

- Quantum states

$$
\left.\sum_{x}^{\forall x \in\{0,1\}^{n}, \alpha_{x} \in \mathbb{C}} \left\lvert\, \begin{array}{l}
\left.\alpha_{x}\right|^{2}=1 \\
\alpha_{000} \\
\alpha_{001} \\
\alpha_{010} \\
\alpha_{011} \\
\alpha_{100} \\
\alpha_{101} \\
\alpha_{110} \\
\alpha_{111}
\end{array}\right.\right)
$$

Dirac notation: $|000\rangle,|001\rangle,|010\rangle, \ldots,|111\rangle$ are basis vectors
\rightarrow Any state can be written as $|\psi\rangle=\sum_{x} \alpha_{x}|x\rangle$

Operations on n-qubit states

- Unitary operations:

$$
\left(U^{\dagger} U=I\right)
$$

$$
\sum_{x} \alpha_{x}|x\rangle \mapsto U\left(\sum_{x} \alpha_{x}|x\rangle\right)
$$

... and the quantum state collapses

Model of computation

Classical Boolean circuits

Bit 0/1

Data flow
$a \wedge=a \wedge b \quad a=\square-\neg a$

Classical circuits:

Quantum circuit model

Quantum circuits:

The power of computation

- Computability: can you solve it, in principle?
[Given program code, will this program terminate or loop indefinitely?]

Uncomputable!
Church-Turing Thesis. A problem can be computed in any reasonable model of computation iff. it is computable by a Boolean circuit.

- Complexity: can you solve it, under resource constraints?
[Can you factor a l024-bit integer in 3 seconds?]

Extended Church-Turing Thesis.

 A function can be computed efficiently in any reasonable model of computation iff. it is efficiently computable by a Boolean circuit.Quantum computer
Disprove ECTT?

Product state vs. entangled state

- Product state $|\psi\rangle_{A B}=|\psi\rangle_{A} \otimes|\phi\rangle_{B}$

- $|\psi\rangle_{A B}$ an arbitrary 2-qubit state:

Can we always write it as $|\psi\rangle_{A} \otimes|\psi\rangle_{B}$ for some $|\psi\rangle_{A}$ and $|\phi\rangle_{B}$?

Product state vs. entangled state

- Entangled state: $|\psi\rangle_{A B} \neq|\psi\rangle_{A} \otimes|\psi\rangle_{B}$ for any $|\psi\rangle_{\mathrm{A}}$ and $|\phi\rangle_{B}$ Ex. $|\Phi\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)$ EPR (Einstein-Podolsky-Rosen) pair

- Mathematically, not surprising: A \& B correlated
- Physically, non-classical correlation, "spooky" action at a distance
- Cor. need to speak of state of entire system than individuals

Exercise: correlation \& entanglement

1. Consider two bits $a \& b$ whose joint state (i.e., prob. distribution) is described by probabilistic vector $v=\left(\begin{array}{c}1 / 2 \\ 0 \\ 0 \\ 1 / 2\end{array}\right)$.

- What is the probability that $a b=11$?
- Does there exist two-dimensional probabilistic vectors u_{A} and u_{B} such that $v=u_{A} \otimes u_{B}$?

Exercise: correlation \& entanglement

2. Prove that the EPR state $|\Phi\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)$ cannot be written as $|\psi\rangle \otimes$ $|\phi\rangle$ for any choice of $|\psi\rangle,|\phi\rangle \in \mathbb{C}^{2}$.

Two-qubit gates

Given two qubits in state $|\psi\rangle_{A B}$

Description	Algebra	Circuit
Apply unitary U to $\|\psi\rangle_{A B}$	$U\|\psi\rangle_{A B}$	$\|\psi\rangle_{A B}\left\{\begin{array}{l}\frac{A}{B} U \\ U\end{array}\right.$
Apply unitary U to qubit A	$U \otimes I\|\psi\rangle_{A B}$	$\|\psi\rangle_{A B}\left\{\begin{array}{l}\frac{A}{B} \\ \underline{U}\end{array}\right.$
Apply unitary U_{A} to qubit A $\& ~ u n i t a r y ~$$U_{B}$ to qubit B	$U_{A} \otimes U_{B}\|\psi\rangle_{A B}$	$\|\psi\rangle_{A B}\left\{\begin{array}{l}\frac{A}{U_{A}} \\ \underline{B}\end{array}\right.$

- Facts
- Given unitary $U, V, U \otimes V$ is also unitary.
- $(U \otimes V)(A \otimes B)=U A \otimes V B$

Exercise: two-qubit gates

i.e. $|\Phi\rangle=X \otimes I\left((|0\rangle+|1\rangle)_{A} \otimes|0\rangle_{B}\right)$ $=$?

$$
\text { i.e. }|\Phi\rangle=X \otimes Z(|00\rangle+|11\rangle)
$$

$$
=?
$$

Exercise: CNOT

1

$\|\psi\rangle$	$\|\Phi\rangle$
$\|0\rangle+\|1\rangle$	$?$
$\|0\rangle-\|1\rangle$	$?$

Exercise: CNOT

2

N.B. "control" qubit may change on some input state

Exercise: controlled unitary

Apps of Entanglement

1. Superdense coding

How much classical information in n qubits?

- $2^{n}-1$ complex numbers apparently needed to describe an arbitrary n-qubit state:

$$
\alpha_{000}|000\rangle+\alpha_{001}|001\rangle+\alpha_{010}|010\rangle+\ldots+\alpha_{111}|111\rangle
$$

- Does this mean that an exponential amount of classical information is somehow "stored" in n qubits?

Not in an operational sense ...
Holevo's Theorem (from 1973) implies: one cannot convey more than n classical bits of information in n qubits

Superdense coding (prelude)

Goal: Alice wants to convey two classical bits to Bob sending just one qubit

By Holevo's Theorem, this is impossible!

Superdense coding with shared EPR

Yes, if they pre-share EPR!

$\checkmark a b$

Superdense coding protocol

1. Bob: create $|00\rangle+|11\rangle$ and send the first qubit to Alice
2. Alice:

- if $a=1$ then apply Z to qubit
- if $b=1$ then apply X to qubit
- send the qubit back to Bob

3. Bob: apply the "gadget" and measure the two qubits

Analysis

$a b$	
00	$? \psi\rangle$
01	$?$
10	$?$
11	$?$

Input	Output
$\|00\rangle+\|11\rangle$	$?$
$\|01\rangle+\|10\rangle$	$?$
$\|00\rangle-\|11\rangle$	$?$
$\|01\rangle-\|10\rangle$	$?$

Bell states

Apps of Entanglement

2. Quantum teleportation

Partial measurement

- Measuring the first qubit of a two-qubit system

$$
\alpha_{00}|00\rangle+\alpha_{01}|01\rangle+\alpha_{10}|10\rangle+\alpha_{11}|11\rangle
$$

- Result

See	With probability	posterior state (renormalized!)
0	$p_{0}:=\left\|\alpha_{00}\right\|^{2}+\left\|\alpha_{01}\right\|^{2}$	$\frac{\alpha_{00}\|00\rangle+\alpha_{01}\|01\rangle}{\sqrt{\left\|\alpha_{00}\right\|^{2}+\left\|\alpha_{01}\right\|^{2}}}$
1	$p_{1}:=\left\|\alpha_{10}\right\|^{2}+\left\|\alpha_{11}\right\|^{2}$	$\frac{\alpha_{10}\|10\rangle+\alpha_{11}\|11\rangle}{\sqrt{\left\|\alpha_{10}\right\|^{2}+\left\|\alpha_{11}\right\|^{2}}}$

Partial measurement: Exercise

- Measuring the first qubit of a two-qubit system

See	With probability	posterior state (renormalized!)
0		
1		

Partial measurement: Exercise

- Measuring the first qubit of a two-qubit system

$$
|\psi\rangle=\frac{1}{2}|00\rangle-\frac{i}{2}|10\rangle+\frac{1}{\sqrt{2}}|11\rangle
$$

- A trick

See	With probability	posterior state (renormalized!)
0		
1		

Transmitting qubits by classical bits

Goal: Alice conveys a qubit to Bob by sending just classical bits

- If Alice knows $\alpha, \beta \in \mathbb{C}$, requires infinitely many bits for perfect precision
- If Alice doesn't know α or β, she can at best acquire one bit by measurement

Teleportation

Theorem. two classical bit enough if pre-share EPR

Teleportation: protocol

Theorem. two classical bit enough if pre-share EPR

- Does Alice still hold $|\psi\rangle$ at the end?
- Communicating faster than the speed of light?

Teleportation: analysis

Questions?

- Use zoom chat and campuswire DM/chatroom to mingle and identify potential group members
- Ask me if you want a Zoom breakout room

Scratch

