F, 04/10/2020

Week 2

S'20 CS 410/510

Intro to quantum computing

Fang Song

- Multiple qubits, tensor product
- Quantum circuit model
- Quantum superdense coding
- Quantum teleportation

Credit: based on slides by Richard Cleve

Logistics

• HW1 due Sunday

• Work in groups, write up individually

Project

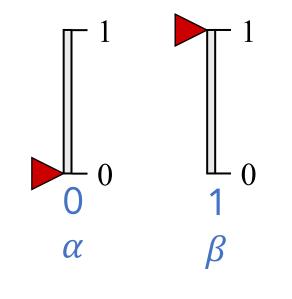
• Form groups of 2-3 persons by next week

Workflow

- Work on pre-class materials: 80% success depends on it!
- In-class: practice what you studied and extend to new topics
- Post-class: review and reinforce

Superposition

Review: qubit



- Amplitudes $\alpha, \beta \in \mathbb{C}, |\alpha|^2 + |\beta|^2 = 1$
- Explicit state is $\begin{pmatrix} \alpha \\ \beta \end{pmatrix} \in \mathbb{C}^2$

(2-norm / Euclidean norm = I)

• Cannot explicitly extract α and β (only statistical inference)

• Ket:
$$|\psi\rangle$$
 always denotes a column vector
Convention: $|0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, |1\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

Ex.
$$|\psi\rangle = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_d \end{pmatrix}$$

Bra: $\langle \psi |$ always denotes a row vector that is the conjugate transpose of $|\psi\rangle$ Ex. $\langle \psi | = (\alpha_1^*, \alpha_2^*, ..., \alpha_d^*)$

Dirac bra/ket notation

• Inner product: $\langle \psi | \phi \rangle$ denotes $\langle \psi | \cdot | \phi \rangle$

- Ex. $\langle 0|1\rangle = (1 \ 0) \begin{pmatrix} 0\\1 \end{pmatrix} = 0$
- Outer product: $|\psi\rangle\langle\phi|$ denotes $|\psi\rangle\cdot\langle\phi|$
 - Vectors to matrix

Ex. $|0\rangle\langle 1| = \begin{pmatrix} 1\\ 0 \end{pmatrix}(0 \ 1) = \begin{pmatrix} 0 & 1\\ 0 & 0 \end{pmatrix}$

0. Initialize qubit to $|0\rangle$ or to $|1\rangle$

1. Apply a unitary operation $U(U^{\dagger}U = I)$

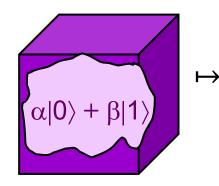
Basic operations on a qubit

Linear map $A \leftrightarrow \text{matrix } A$ Apply A to $|\psi\rangle \leftrightarrow \text{matrix mult. } A|\psi\rangle$

$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \qquad X|0\rangle = |1\rangle, X|1\rangle = |0\rangle$$
$$Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \qquad Z|0\rangle = |0\rangle, Z|1\rangle = -|1\rangle$$
$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}, \qquad H|0\rangle = |+\rangle, H|1\rangle = |-\rangle$$

0. Initialize qubit to $|0\rangle$ or to $|1\rangle$ 1. Apply a unitary operation $U(U^{\dagger}U = I)$

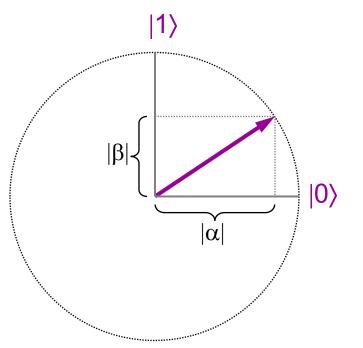
2. Perform a "standard" measurement:



$$\begin{cases} 0 \text{ with prob } |\alpha|^2 & |0\rangle \\ 1 \text{ with prob } |\beta|^2 & |1\rangle \end{cases}$$

... and the quantum state collapses

Basic operations on a qubit



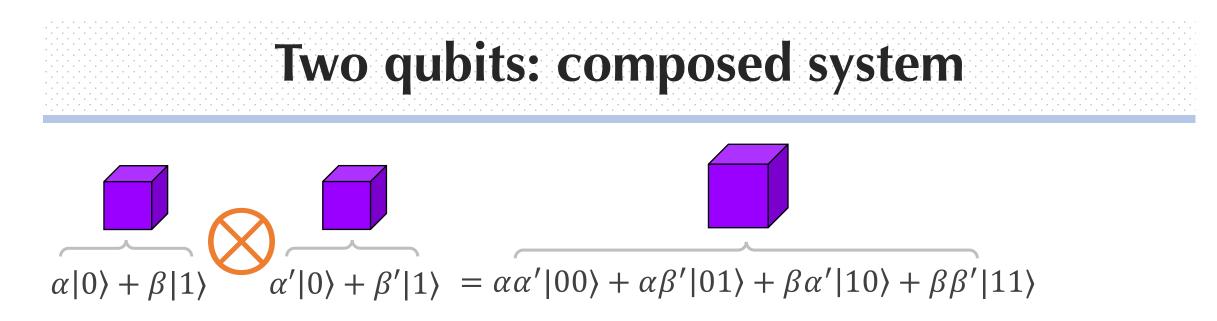
N.B.There exist other quantum operations, but they can all be "simulated" by the aforementioned types

A few tips

• Linearity. Let A be a linear map. Any $v_i \in \mathbb{C}^d$, $c_i \in C$, i = 1, ..., k

$$A\left(\sum_{i}c_{i}\cdot v_{i}\right) = \sum_{i}c_{i}\cdot A(v_{i})$$

- \Rightarrow A is uniquely determined by its action on a basis
 - Let $u_1, \dots, u_d \in \mathbb{C}^d$ be a basis $\rightarrow \forall v \in \mathbb{C}^d$ can be expressed by $v = \sum_i c_i u_i$
 - Given $A(u_i) = w_i$, $i = 1, ..., d \rightarrow Av = A(\sum_i c_i u_i) = \sum_i c_i A(u_i) = \sum_i c_i w_i$
- When Dirac notation unclear, convert to vectors/matrices
- When Dirac notation unclear, convert to vectors/matrices



■ Tensor product ⊗

$$[A]_{m \times n} \otimes [B]_{k \times \ell} = \begin{pmatrix} a_{11}B & a_{12}B & \dots & a_{1n}B \\ a_{21}B & a_{22}B & \dots & a_{2n}B \\ \vdots & \vdots & \dots & \dots \\ a_{m1}B & a_{m2}B & \dots & a_{mn}B \end{pmatrix}_{mk \times n\ell}$$

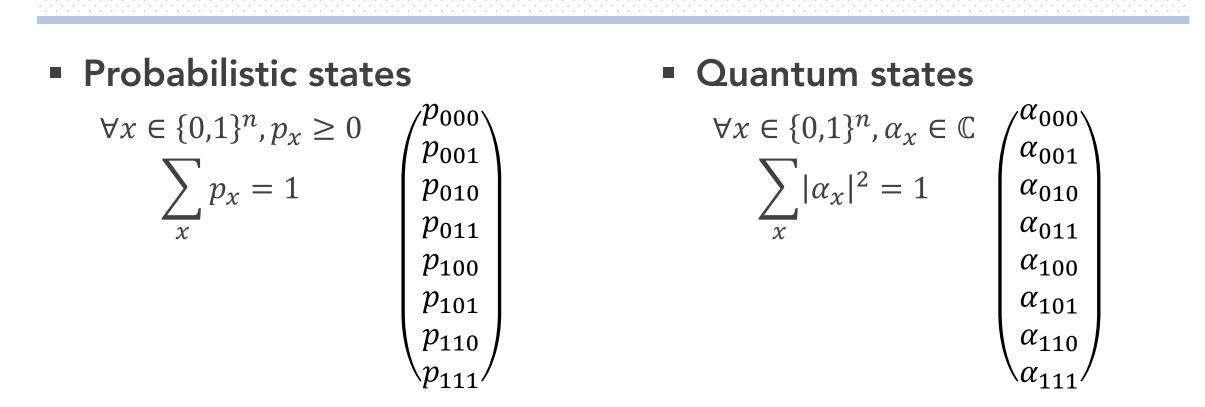
$$[A]_{m \times n} \otimes [B]_{k \times \ell} = \begin{pmatrix} a_{11}B & a_{12}B & \dots & a_{1n}B \\ a_{21}B & a_{22}B & \dots & a_{2n}B \\ \vdots & \vdots & \dots & \dots \\ a_{m1}B & a_{m2}B & \dots & a_{mn}B \end{pmatrix}_{mk \times n\ell}$$

Two qubits: composed system

Ex.
$$|00\rangle \coloneqq |0\rangle \otimes |0\rangle = \begin{pmatrix} 1\\0 \end{pmatrix} \otimes \begin{pmatrix} 1\\0 \end{pmatrix} = \begin{pmatrix} 1 \cdot \begin{pmatrix} 1\\0 \end{pmatrix} \\ 0 \cdot \begin{pmatrix} 1\\0 \end{pmatrix} \end{pmatrix} = \begin{pmatrix} 1\\0 \\ 0\\0 \end{pmatrix}$$

$$|01\rangle = \begin{pmatrix} 0\\0\\0\\0 \end{pmatrix}, |10\rangle = \begin{pmatrix} 0\\0\\1\\0 \end{pmatrix}, |11\rangle = \begin{pmatrix} 0\\0\\0\\1 \end{pmatrix}$$

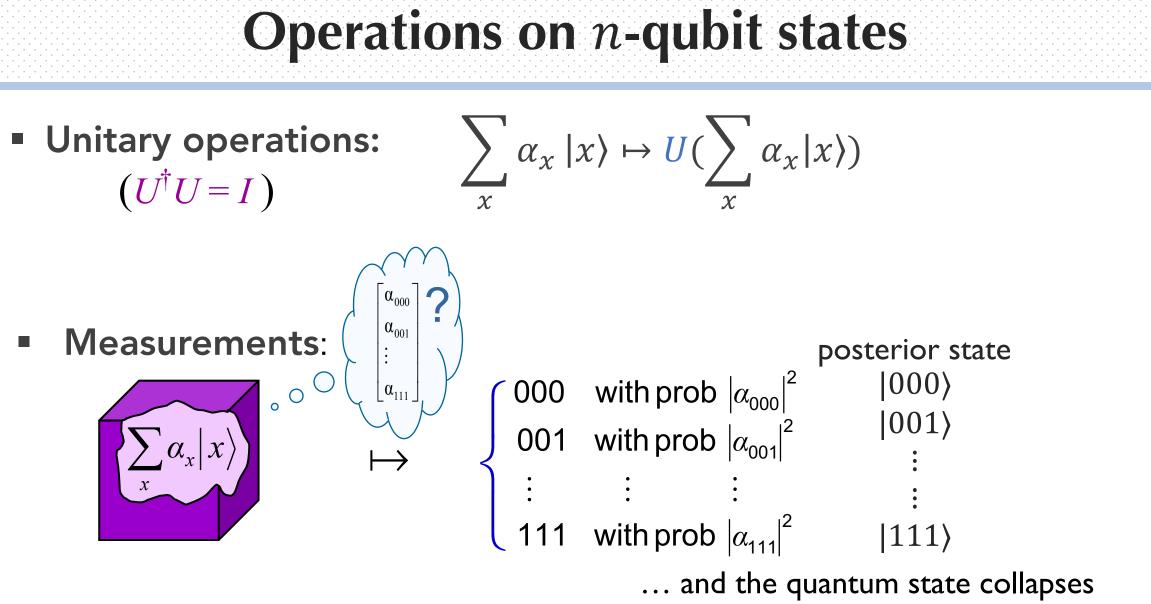
 $|\psi
angle|\phi
angle \coloneqq |\psi
angle \otimes |\phi
angle$



General *n*-qubit systems

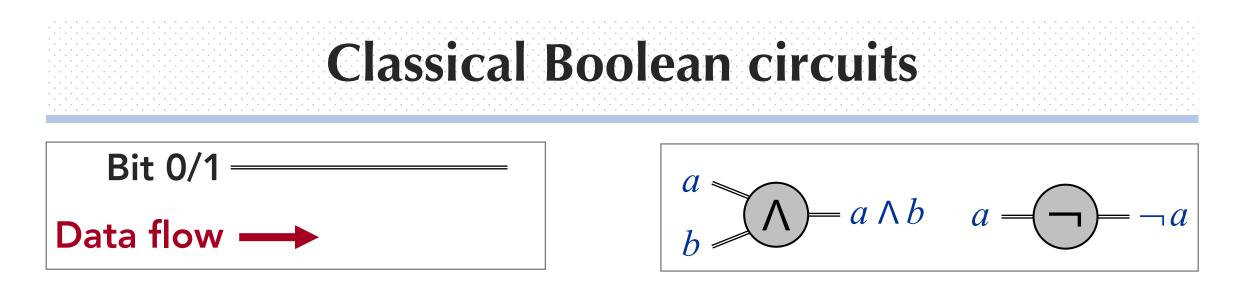
Dirac notation: $|000\rangle$, $|001\rangle$, $|010\rangle$, ..., $|111\rangle$ are basis vectors

Any state can be written as $|\psi\rangle = \sum_x \alpha_x |x\rangle$

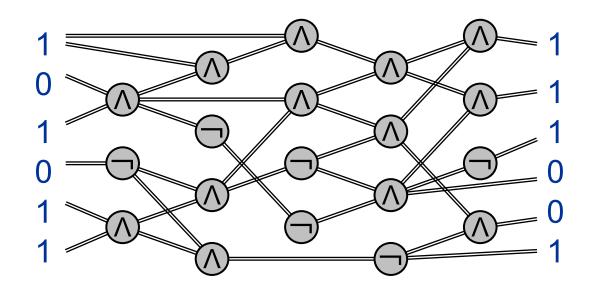


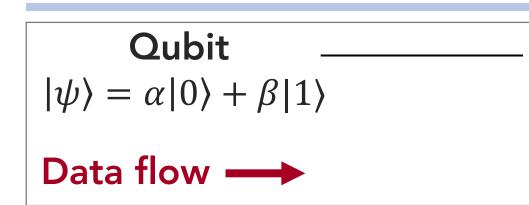
... and the quantum state collapses

Model of computation

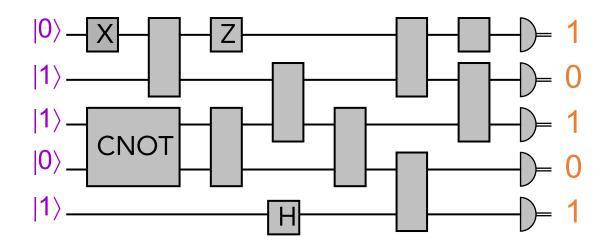


Classical circuits:

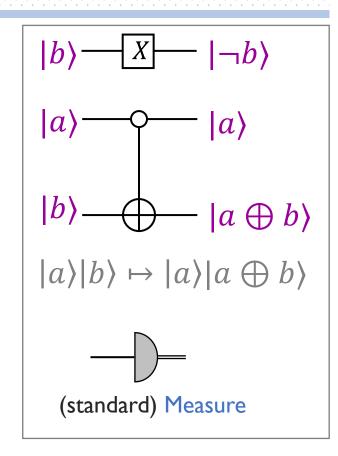




Quantum circuits:



Quantum circuit model



The power of computation

Computability: can you solve it, in principle?

[Given program code, will this program terminate or loop indefinitely?] Uncomputable!

Church-Turing Thesis. A problem can be computed in any *reasonable* model of computation iff. it is computable by a **Boolean circuit**. Complexity: can you solve it, under resource constraints?
 [Can you factor a 1024-bit integer in 3 seconds?]

Extended Church-Turing Thesis. A function can be computed efficiently in any *reasonable* model of computation iff. it is efficiently computable by a **Boolean circuit**.

— Quantum computer

Disprove ECTT?

• Product state $|\psi\rangle_{AB} = |\psi\rangle_A \otimes |\phi\rangle_B$

$$|\psi\rangle_{AB} = \alpha|0\rangle + \beta|1\rangle \bigotimes \alpha'|0\rangle + \beta'|1\rangle$$

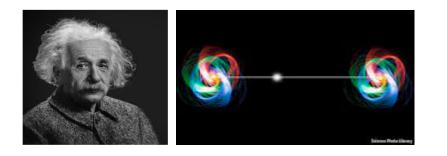
• $|\psi\rangle_{AB}$ an arbitrary 2-qubit state: Can we always write it as $|\psi\rangle_A \otimes |\psi\rangle_B$ for some $|\psi\rangle_A$ and $|\phi\rangle_B$?

Product state vs. entangled state

• Entangled state: $|\psi\rangle_{AB} \neq |\psi\rangle_A \otimes |\psi\rangle_B$ for any $|\psi\rangle_A$ and $|\phi\rangle_B$

Ex. $|\Phi\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$ EPR (Einstein–Podolsky–Rosen) pair

Product state vs. entangled state



- Mathematically, not surprising: A & B correlated
- Physically, non-classical correlation, "spooky" action at a distance

Cor. need to speak of state of entire system than individuals

1. Consider two bits a&b whose joint state (i.e., prob. distribution) is

described by probabilistic vector $v = \begin{pmatrix} 1/2 \\ 0 \\ 0 \\ 1/2 \end{pmatrix}$.

- What is the probability that ab = 11?
- Does there exist two-dimensional probabilistic vectors u_A and u_B such that $v = u_A \otimes u_B$?

Exercise: correlation & entanglement

2. Prove that the EPR state $|\Phi\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$ cannot be written as $|\psi\rangle \otimes |\phi\rangle$ for any choice of $|\psi\rangle, |\phi\rangle \in \mathbb{C}^2$.

Exercise: correlation & entanglement

Given two qubits in state $|\psi\rangle_{AB}$

Description	Algebra	Circuit
Apply unitary U to $ \psi angle_{AB}$	$U \psi angle_{AB}$	$ \psi\rangle_{AB}\left\{ \begin{array}{c} A \\ B \end{array} \right. U$
Apply unitary <i>U</i> to qubit <i>A</i>	$U \otimes I \psi\rangle_{AB}$	$ \psi\rangle_{AB}\left\{ \begin{array}{c} A & U \\ B \end{array} \right\}$
Apply unitary U_A to qubit A & unitary U_B to qubit B	$U_A \otimes U_B \psi\rangle_{AB}$	$ \psi\rangle_{AB} \left\{ \begin{array}{c} A & U_{A} \\ B & U_{B} \end{array} \right.$

Two-qubit gates

Facts

- Given unitary $U, V, U \otimes V$ is also unitary.
- $(U \otimes V)(A \otimes B) = UA \otimes VB$

 $\begin{array}{c|c} 1 & |0\rangle + |\underline{1}\rangle & \underline{X} \\ & \\ & |0\rangle \end{array} \\ \end{array} \Big\} |\Phi\rangle = ?$

i.e. $|\Phi\rangle = X \otimes I((|0\rangle + |1\rangle)_A \otimes |0\rangle_B)$ =? $2 \qquad X \\ |00\rangle + |11\rangle \\ Z \qquad |\Phi\rangle =?$

Exercise: two-qubit gates

i.e.
$$|\Phi\rangle = X \otimes Z(|00\rangle + |11\rangle)$$

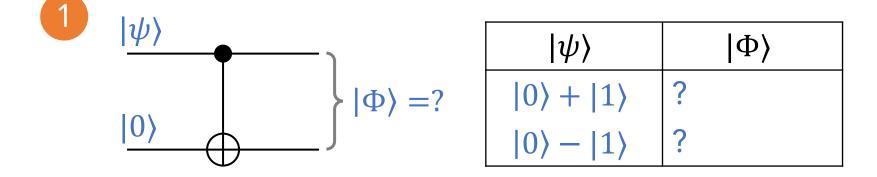
=?

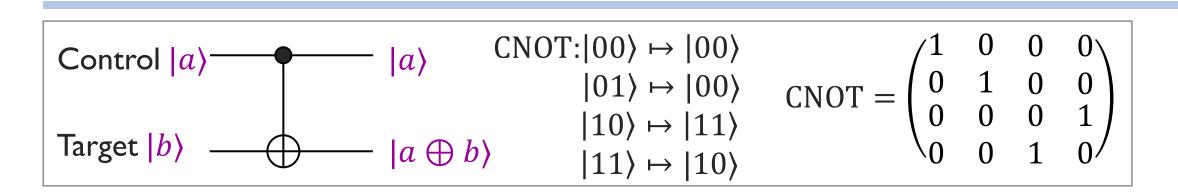
20

Control
$$|a\rangle$$
 $|a\rangle$
 CNOT: $|00\rangle \mapsto |00\rangle$
 $|01\rangle \mapsto |00\rangle$
 $CNOT = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$

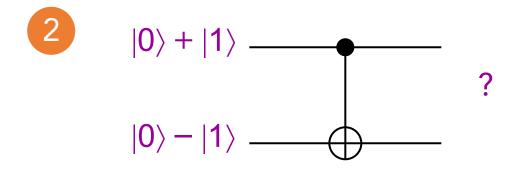
 Target $|b\rangle$
 $|a \oplus b\rangle$
 $|11\rangle \mapsto |10\rangle$
 $CNOT = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$

Exercise: CNOT

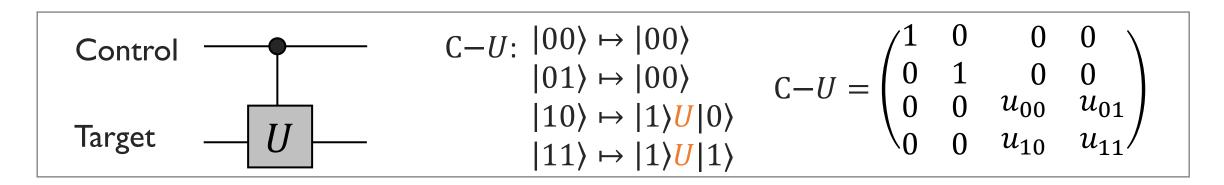




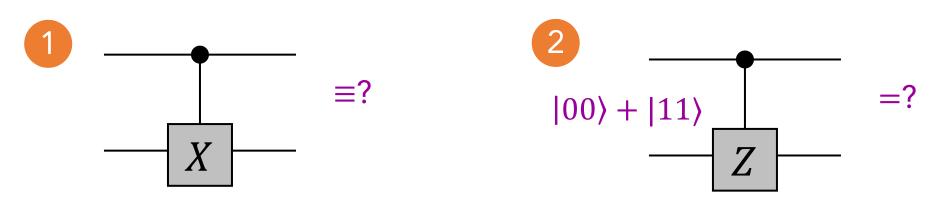
Exercise: CNOT



N.B. "control" qubit may change on some input state



Exercise: controlled unitary



Apps of Entanglement

1. Superdense coding

How much classical information in n qubits?

2ⁿ-1 complex numbers apparently needed to describe an arbitrary n-qubit state:

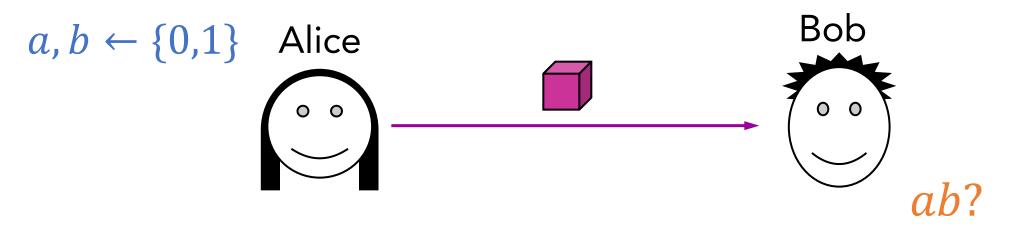
 $\alpha_{000} |000\rangle \ + \ \alpha_{001} |001\rangle \ + \ \alpha_{010} |010\rangle \ + \ \dots \ + \ \alpha_{111} |111\rangle$

Does this mean that an exponential amount of classical information is somehow "stored" in n qubits?

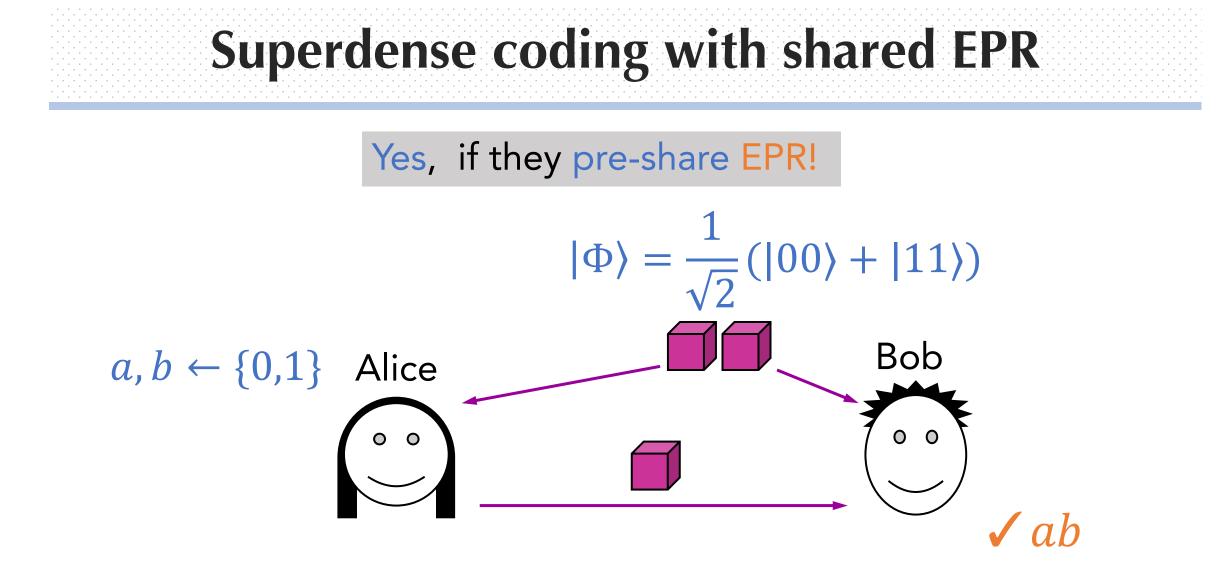
Not in an operational sense ...

Holevo's Theorem (from 1973) implies: one cannot convey more than n classical bits of information in n qubits

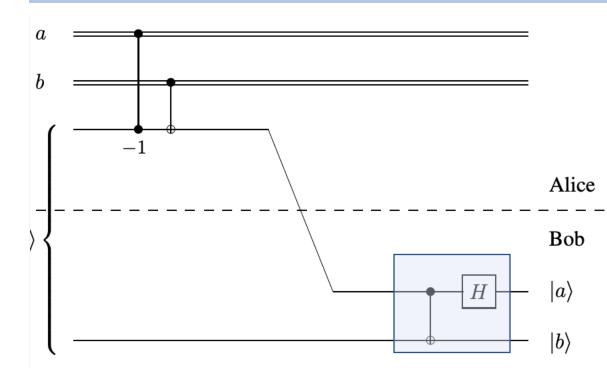
Goal: Alice wants to convey **two** classical bits to Bob sending just **one** qubit



By Holevo's Theorem, this is impossible!

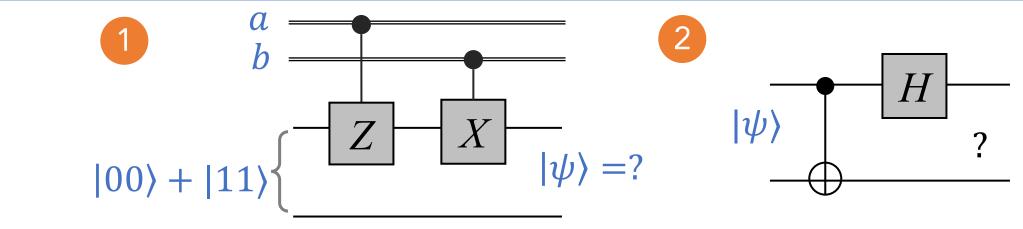


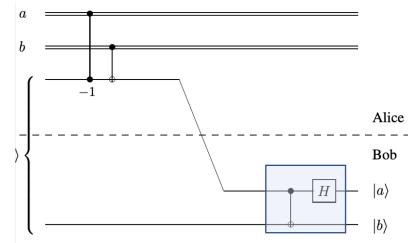
Superdense coding protocol



- 1. Bob: create $|00\rangle + |11\rangle$ and send the first qubit to Alice
- 2. Alice:
 - if a = 1 then apply Z to qubit
 - if b = 1 then apply X to qubit
 - send the qubit back to Bob
- 3. Bob: apply the "gadget" and measure the two qubits

Analysis





ab	$ \psi angle$
00	?
01	?
10	?
11	?

Input	Output
00 angle+ 11 angle	?
01 angle+ 10 angle	?
00 angle - 11 angle	?
01 angle - 10 angle	?

Bell states

Apps of Entanglement

2. Quantum teleportation

Measuring the first qubit of a two-qubit system

$$\alpha_{00}|00\rangle + \alpha_{01}|01\rangle + \alpha_{10}|10\rangle + \alpha_{11}|11\rangle \quad \begin{cases} \boxed{1} \\ \boxed{$$

Result

See	With probability	posterior state (renormalized!)
0	$p_0 \coloneqq \alpha_{00} ^2 + \alpha_{01} ^2$	$\alpha_{00} 00\rangle + \alpha_{01} 01\rangle$
		$\sqrt{ \alpha_{00} ^2 + \alpha_{01} ^2}$
1	$p_1 \coloneqq \alpha_{10} ^2 + \alpha_{11} ^2$	$\alpha_{10} 10\rangle + \alpha_{11} 11\rangle$
		$\sqrt{ \alpha_{10} ^2 + \alpha_{11} ^2}$

Partial measurement

Measuring the first qubit of a two-qubit system

$$|\psi\rangle = \frac{1}{2}|00\rangle - \frac{i}{2}|10\rangle + \frac{1}{\sqrt{2}}|11\rangle \quad \begin{cases} \boxed{} \\ \boxed{} \end{array}$$

Partial measurement: Exercise

See	With probability	posterior state (renormalized!)
0		
1		

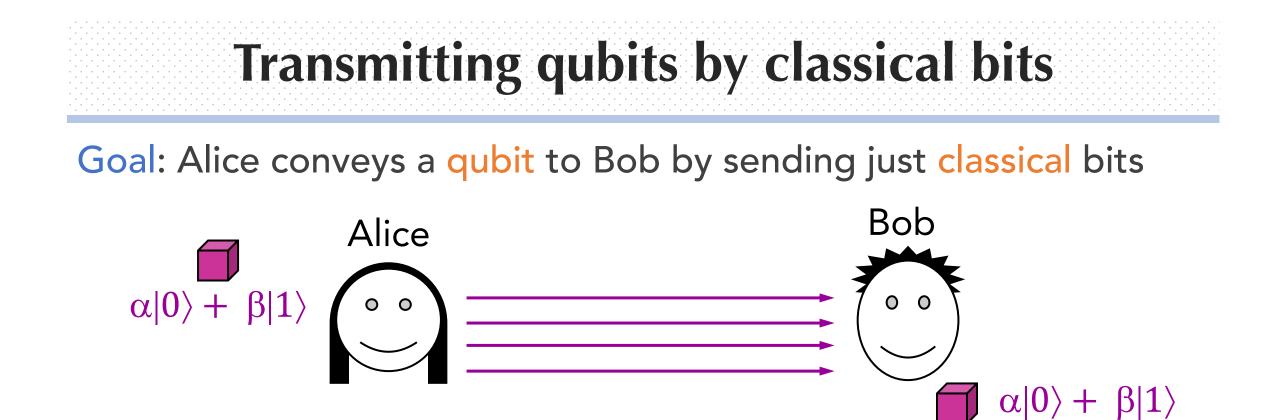
Measuring the first qubit of a two-qubit system

$$|\psi\rangle = \frac{1}{2}|00\rangle - \frac{i}{2}|10\rangle + \frac{1}{\sqrt{2}}|11\rangle \quad \begin{cases} \boxed{10} \\ \boxed{10} \\$$

A trick

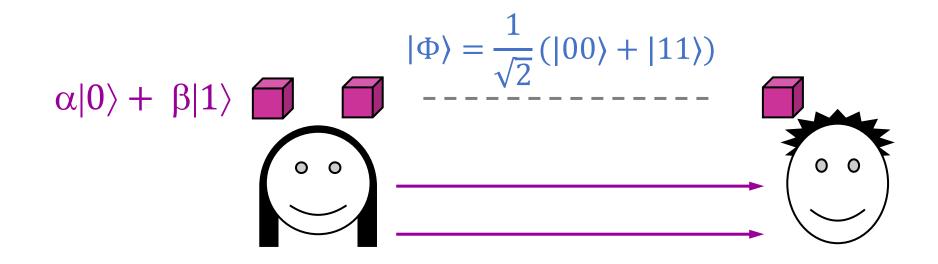
See	With probability	posterior state (renormalized!)
0		
1		

Partial measurement: Exercise



- If Alice knows $\alpha, \beta \in \mathbb{C}$, requires infinitely many bits for perfect precision
- If Alice doesn't know α or β , she can at best acquire one bit by measurement

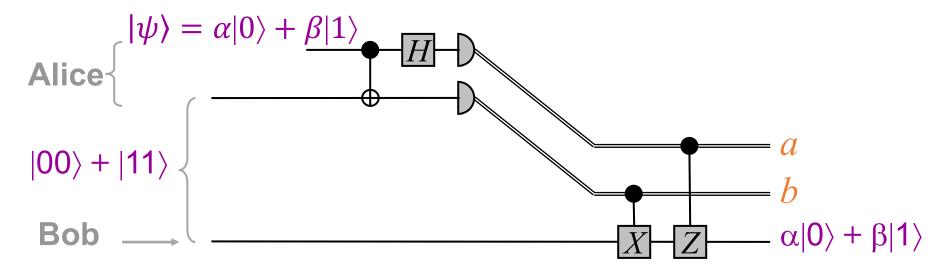
Theorem. two classical bit enough if pre-share EPR



Teleportation

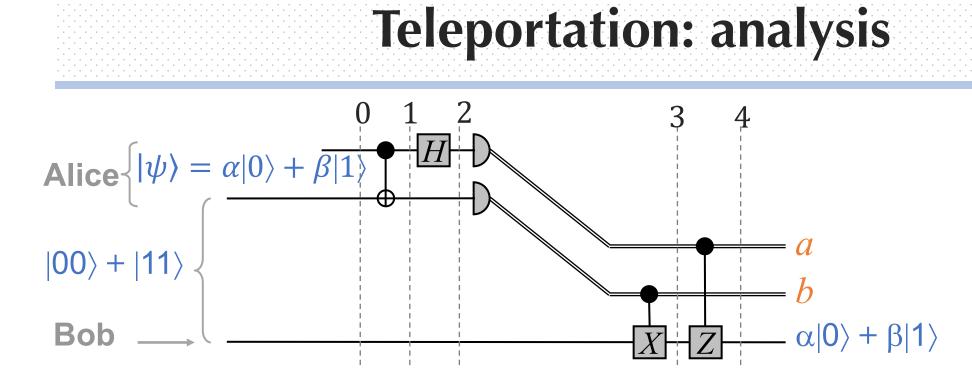
Theorem. two classical bit enough if pre-share EPR

Teleportation: protocol



• Does Alice still hold $|\psi\rangle$ at the end?

Communicating faster than the speed of light?



Questions?

- Use zoom chat and campuswire DM/chatroom to mingle and identify potential group members
- Ask me if you want a Zoom breakout room

Scratch