
The quantum Fourier transform 217

subgroup problem, a generalization of the phase estimation and order-finding problems
that has among its special cases an efficient quantum algorithm for the discrete logarithm
problem, another problem thought to be intractable on a classical computer.

5.1 The quantum Fourier transform

A good idea has a way of becoming simpler and solving problems other than
that for which it was intended.
– Robert Tarjan

One of the most useful ways of solving a problem in mathematics or computer science
is to transform it into some other problem for which a solution is known. There are a
few transformations of this type which appear so often and in so many different contexts
that the transformations are studied for their own sake. A great discovery of quantum
computation has been that some such transformations can be computed much faster on
a quantum computer than on a classical computer, a discovery which has enabled the
construction of fast algorithms for quantum computers.
One such transformation is the discrete Fourier transform. In the usual mathematical

notation, the discrete Fourier transform takes as input a vector of complex numbers,
x0, . . . , xN−1 where the length N of the vector is a fixed parameter. It outputs the
transformed data, a vector of complex numbers y0, . . . , yN−1, defined by

yk ≡ 1√
N

N−1
∑

j=0

xje
2πijk/N . (5.1)

The quantum Fourier transform is exactly the same transformation, although the
conventional notation for the quantum Fourier transform is somewhat different. The
quantum Fourier transform on an orthonormal basis |0〉, . . . , |N − 1〉 is defined to be a
linear operator with the following action on the basis states,

|j〉 −→ 1√
N

N−1
∑

k=0

e2πijk/N |k〉 . (5.2)

Equivalently, the action on an arbitrary state may be written
N−1
∑

j=0

xj |j〉 −→
N−1
∑

k=0

yk|k〉 , (5.3)

where the amplitudes yk are the discrete Fourier transform of the amplitudes xj . It is not
obvious from the definition, but this transformation is a unitary transformation, and thus
can be implemented as the dynamics for a quantum computer. We shall demonstrate
the unitarity of the Fourier transform by constructing a manifestly unitary quantum
circuit computing the Fourier transform. It is also easy to prove directly that the Fourier
transform is unitary:

Exercise 5.1: Give a direct proof that the linear transformation defined by
Equation (5.2) is unitary.

Exercise 5.2: Explicitly compute the Fourier transform of the n qubit state |00 . . . 0〉.

Fang Song
Do not distribute

218 The quantum Fourier transform and its applications

In the following, we takeN = 2n, where n is some integer, and the basis |0〉, . . . , |2n−
1〉 is the computational basis for an n qubit quantum computer. It is helpful to write the
state |j〉 using the binary representation j = j1j2 . . . jn. More formally, j = j12n−1 +
j22n−2 + · · ·+ jn20. It is also convenient to adopt the notation 0.jljl+1 . . . jm to represent
the binary fraction jl/2 + jl+1/4 + · · · + jm/2m−l+1.
With a little algebra the quantum Fourier transform can be given the following useful

product representation:

|j1, . . . , jn〉 →

(

|0〉 + e2πi0.jn |1〉
) (

|0〉 + e2πi0.jn−1jn |1〉
)

· · ·
(

|0〉 + e2πi0.j1j2···jn |1〉
)

2n/2
.

(5.4)

This product representation is so useful that you may even wish to consider this to be the
definition of the quantum Fourier transform. As we explain shortly this representation
allows us to construct an efficient quantum circuit computing the Fourier transform, a
proof that the quantum Fourier transform is unitary, and provides insight into algorithms
based upon the quantum Fourier transform. As an incidental bonus we obtain the classical
fast Fourier transform, in the exercises!
The equivalence of the product representation (5.4) and the definition (5.2) follows

from some elementary algebra:

|j〉 → 1
2n/2

2n−1
∑

k=0

e2πijk/2n |k〉 (5.5)

=
1
2n/2

1
∑

k1=0

. . .
1

∑

kn=0

e2πij
(
∑n

l=1
kl2−l

)

|k1 . . . kn〉 (5.6)

=
1
2n/2

1
∑

k1=0

. . .
1

∑

kn=0

n
⊗

l=1

e2πijkl2−l

|kl〉 (5.7)

=
1
2n/2

n
⊗

l=1

[

1
∑

kl=0

e2πijkl2−l

|kl〉
]

(5.8)

=
1
2n/2

n
⊗

l=1

[

|0〉 + e2πij2−l

|1〉
]

(5.9)

=

(

|0〉 + e2πi0.jn |1〉
) (

|0〉 + e2πi0.jn−1jn |1〉
)

· · ·
(

|0〉 + e2πi0.j1j2···jn |1〉
)

2n/2 .(5.10)

The product representation (5.4) makes it easy to derive an efficient circuit for the
quantum Fourier transform. Such a circuit is shown in Figure 5.1. The gate Rk denotes
the unitary transformation

Rk ≡
[

1 0
0 e2πi/2k

]

. (5.11)

To see that the pictured circuit computes the quantum Fourier transform, consider what
happens when the state |j1 . . . jn〉 is input. Applying the Hadamard gate to the first bit
produces the state

1
21/2

(

|0〉 + e2πi0.j1 |1〉
)

|j2 . . . jn〉 , (5.12)

The quantum Fourier transform 219

Figure 5.1. Efficient circuit for the quantum Fourier transform. This circuit is easily derived from the product
representation (5.4) for the quantum Fourier transform. Not shown are swap gates at the end of the circuit which
reverse the order of the qubits, or normalization factors of 1/

√
2 in the output.

since e2πi0.j1 = −1 when j1 = 1, and is +1 otherwise. Applying the controlled-R2 gate
produces the state

1
21/2

(

|0〉 + e2πi0.j1j2 |1〉
)

|j2 . . . jn〉 . (5.13)

We continue applying the controlled-R3, R4 through Rn gates, each of which adds an
extra bit to the phase of the co-efficient of the first |1〉. At the end of this procedure we
have the state

1
21/2

(

|0〉 + e2πi0.j1j2...jn |1〉
)

|j2 . . . jn〉 . (5.14)

Next, we perform a similar procedure on the second qubit. The Hadamard gate puts us
in the state

1
22/2

(

|0〉 + e2πi0.j1j2...jn |1〉
) (

|0〉 + e2πi0.j2 |1〉
)

|j3 . . . jn〉 , (5.15)

and the controlled-R2 through Rn−1 gates yield the state

1
22/2

(

|0〉 + e2πi0.j1j2...jn |1〉
) (

|0〉 + e2πi0.j2...jn |1〉
)

|j3 . . . jn〉. (5.16)

We continue in this fashion for each qubit, giving a final state

1
2n/2

(

|0〉 + e2πi0.j1j2...jn |1〉
) (

|0〉 + e2πi0.j2...jn |1〉
)

. . .
(

|0〉 + e2πi0.jn |1〉
)

. (5.17)

Swap operations (see Section 1.3.4 for a description of the circuit), omitted from Fig-
ure 5.1 for clarity, are then used to reverse the order of the qubits. After the swap
operations, the state of the qubits is

1
2n/2

(

|0〉 + e2πi0.jn |1〉
) (

|0〉 + e2πi0.jn−1jn |1〉
)

. . .
(

|0〉 + e2πi0.j1j2···jn |1〉
)

. (5.18)

Comparing with Equation (5.4) we see that this is the desired output from the quantum
Fourier transform. This construction also proves that the quantum Fourier transform is
unitary, since each gate in the circuit is unitary. An explicit example showing a circuit
for the quantum Fourier transform on three qubits is given in Box 5.1.
How many gates does this circuit use? We start by doing a Hadamard gate and n− 1

conditional rotations on the first qubit – a total of n gates. This is followed by a Hadamard
gate and n− 2 conditional rotations on the second qubit, for a total of n+ (n− 1) gates.
Continuing in this way, we see that n+ (n− 1)+ · · ·+1 = n(n+1)/2 gates are required,

220 The quantum Fourier transform and its applications

Box 5.1: Three qubit quantum Fourier transform

For concreteness it may help to look at the explicit circuit for the three qubit
quantum Fourier transform:

Recall that S and T are the phase and π/8 gates (see page xxiii). As a matrix the
quantum Fourier transform in this instance may be written out explicitly, using
ω = e2πi/8 =

√
i, as

1√
8

1 1 1 1 1 1 1 1
1 ω ω2 ω3 ω4 ω5 ω6 ω7

1 ω2 ω4 ω6 1 ω2 ω4 ω6

1 ω3 ω6 ω1 ω4 ω7 ω2 ω5

1 ω4 1 ω4 1 ω4 1 ω4

1 ω5 ω2 ω7 ω4 ω1 ω6 ω3

1 ω6 ω4 ω2 1 ω6 ω4 ω2

1 ω7 ω6 ω5 ω4 ω3 ω2 ω1

. (5.19)

plus the gates involved in the swaps. At most n/2 swaps are required, and each swap
can be accomplished using three controlled- gates. Therefore, this circuit provides a
Θ(n2) algorithm for performing the quantum Fourier transform.
In contrast, the best classical algorithms for computing the discrete Fourier transform

on 2n elements are algorithms such as the Fast Fourier Transform (FFT), which com-
pute the discrete Fourier transform usingΘ(n2n) gates. That is, it requires exponentially
more operations to compute the Fourier transform on a classical computer than it does
to implement the quantum Fourier transform on a quantum computer.
At face value this sounds terrific, since the Fourier transform is a crucial step in so many

real-world data processing applications. For example, in computer speech recognition,
the first step in phoneme recognition is to Fourier transform the digitized sound. Can
we use the quantum Fourier transform to speed up the computation of these Fourier
transforms? Unfortunately, the answer is that there is no known way to do this. The
problem is that the amplitudes in a quantum computer cannot be directly accessed by
measurement. Thus, there is no way of determining the Fourier transformed amplitudes
of the original state. Worse still, there is in general no way to efficiently prepare the
original state to be Fourier transformed. Thus, finding uses for the quantum Fourier
transform is more subtle than we might have hoped. In this and the next chapter we
develop several algorithms based upon a more subtle application of the quantum Fourier
transform.

Phase estimation 221

Exercise 5.3: (Classical fast Fourier transform) Suppose we wish to perform a
Fourier transform of a vector containing 2n complex numbers on a classical
computer. Verify that the straightforward method for performing the Fourier
transform, based upon direct evaluation of Equation (5.1) requires Θ(22n)
elementary arithmetic operations. Find a method for reducing this to Θ(n2n)
operations, based upon Equation (5.4).

Exercise 5.4: Give a decomposition of the controlled-Rk gate into single qubit and
gates.

Exercise 5.5: Give a quantum circuit to perform the inverse quantum Fourier
transform.

Exercise 5.6: (Approximate quantum Fourier transform) The quantum circuit
construction of the quantum Fourier transform apparently requires gates of
exponential precision in the number of qubits used. However, such precision is
never required in any quantum circuit of polynomial size. For example, let U be
the ideal quantum Fourier transform on n qubits, and V be the transform which
results if the controlled-Rk gates are performed to a precision ∆ = 1/p(n) for
some polynomial p(n). Show that the error E(U, V) ≡ max|ψ〉 ‖(U − V)|ψ〉‖
scales as Θ(n2/p(n)), and thus polynomial precision in each gate is sufficient to
guarantee polynomial accuracy in the output state.

5.2 Phase estimation

The Fourier transform is the key to a general procedure known as phase estimation,
which in turn is the key for many quantum algorithms. Suppose a unitary operator U
has an eigenvector |u〉 with eigenvalue e2πiϕ, where the value of ϕ is unknown. The goal
of the phase estimation algorithm is to estimate ϕ. To perform the estimation we assume
that we have available black boxes (sometimes known as oracles) capable of preparing the
state |u〉 and performing the controlled-U 2j operation, for suitable non-negative integers
j. The use of black boxes indicates that the phase estimation procedure is not a complete
quantum algorithm in its own right. Rather, you should think of phase estimation as a
kind of ‘subroutine’ or ‘module’ that, when combined with other subroutines, can be
used to perform interesting computational tasks. In specific applications of the phase
estimation procedure we shall do exactly this, describing how these black box operations
are to be performed, and combining them with the phase estimation procedure to do
genuinely useful tasks. For the moment, though, we will continue to imagine them as
black boxes.
The quantum phase estimation procedure uses two registers. The first register contains

t qubits initially in the state |0〉. How we choose t depends on two things: the number
of digits of accuracy we wish to have in our estimate for ϕ, and with what probability
we wish the phase estimation procedure to be successful. The dependence of t on these
quantities emerges naturally from the following analysis.
The second register begins in the state |u〉, and contains as many qubits as is necessary

to store |u〉. Phase estimation is performed in two stages. First, we apply the circuit shown
in Figure 5.2. The circuit begins by applying a Hadamard transform to the first register,
followed by application of controlled-U operations on the second register, with U raised

