Appendix A

Mathematical Background

A. 1 Identities and Inequalities

We list some standard identities and inequalities that are used at various points throughout the text.

THEOREM A. 1 (Binomial expansion theorem) Let x, y be real numbers, and let n be a positive integer. Then

$$
(x+y)^{n}=\sum_{i=0}^{n}\binom{n}{i} x^{i} y^{n-i} .
$$

PROPOSITION A. 2 For all $x \geq 1$ it holds that $(1-1 / x)^{x} \leq e^{-1}$.

PROPOSITION A. 3 For all x it holds that $1-x \leq e^{-x}$.

PROPOSITION A. 4 For all x with $0 \leq x \leq 1$ it holds that

$$
e^{-x} \leq 1-\left(1-\frac{1}{e}\right) \cdot x \leq 1-\frac{x}{2}
$$

A. 2 Asymptotic Notation

We use standard notation for expressing asymptotic behavior of functions.

DEFINITION A. 5 Let $f(n), g(n)$ be functions from non-negative integers to non-negative reals. Then:

- $f(n)=\mathcal{O}(g(n))$ means that there exist positive integers c and n^{\prime} such that for all $n>n^{\prime}$ it holds that $f(n) \leq c \cdot g(n)$.
- $f(n)=\Omega(g(n))$ means that there exist positive integers c and n^{\prime} such that for all $n>n^{\prime}$ it holds that $f(n) \geq c \cdot g(n)$.
- $f(n)=\Theta(g(n))$ means that there exist positive integers c_{1}, c_{2}, and n^{\prime} such that for all $n>n^{\prime}$ it holds that $c_{1} \cdot g(n) \leq f(n) \leq c_{2} \cdot g(n)$.
- $f(n)=o(g(n))$ means that $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=0$.
- $f(n)=\omega(g(n))$ means that $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=\infty$.

Example A. 6

Let $f(n)=n^{4}+3 n+500$. Then:

- $f(n)=\mathcal{O}\left(n^{4}\right)$.
- $f(n)=\mathcal{O}\left(n^{5}\right)$. In fact, $f(n)=o\left(n^{5}\right)$.
- $f(n)=\Omega\left(n^{3} \log n\right)$. In fact, $f(n)=\omega\left(n^{3} \log n\right)$.
- $f(n)=\Theta\left(n^{4}\right)$.

A. 3 Basic Probability

We assume the reader is familiar with basic probability theory, on the level of what is covered in a typical undergraduate course on discrete mathematics. Here we simply remind the reader of some notation and basic facts.

If E is an event, then \bar{E} denotes the complement of that event; i.e., \bar{E} is the event that E does not occur. By definition, $\operatorname{Pr}[E]=1-\operatorname{Pr}[\bar{E}]$. If E_{1} and E_{2} are events, then $E_{1} \wedge E_{2}$ denotes their conjunction; i.e., $E_{1} \wedge E_{2}$ is the event that both E_{1} and E_{2} occur. By definition, $\operatorname{Pr}\left[E_{1} \wedge E_{2}\right] \leq \operatorname{Pr}\left[E_{1}\right]$. Events E_{1} and E_{2} are said to be independent if $\operatorname{Pr}\left[E_{1} \wedge E_{2}\right]=\operatorname{Pr}\left[E_{1}\right] \cdot \operatorname{Pr}\left[E_{2}\right]$.

If E_{1} and E_{2} are events, then $E_{1} \vee E_{2}$ denotes the disjunction of E_{1} and E_{2}; that is, $E_{1} \vee E_{2}$ is the event that either E_{1} or E_{2} occurs. It follows from the definition that $\operatorname{Pr}\left[E_{1} \vee E_{2}\right] \geq \operatorname{Pr}\left[E_{1}\right]$. The union bound is often a very useful upper bound of this quantity.

PROPOSITION A. 7 (Union Bound)

$$
\operatorname{Pr}\left[E_{1} \vee E_{2}\right] \leq \operatorname{Pr}\left[E_{1}\right]+\operatorname{Pr}\left[E_{2}\right]
$$

Repeated application of the union bound for any events E_{1}, \ldots, E_{k} gives

$$
\operatorname{Pr}\left[\bigvee_{i=1}^{k} E_{i}\right] \leq \sum_{i=1}^{k} \operatorname{Pr}\left[E_{i}\right]
$$

The conditional probability of E_{1} given E_{2}, denoted $\operatorname{Pr}\left[E_{1} \mid E_{2}\right]$, is defined as

$$
\operatorname{Pr}\left[E_{1} \mid E_{2}\right] \stackrel{\text { def }}{=} \frac{\operatorname{Pr}\left[E_{1} \wedge E_{2}\right]}{\operatorname{Pr}\left[E_{2}\right]}
$$

as long as $\operatorname{Pr}\left[E_{2}\right] \neq 0$. (If $\operatorname{Pr}\left[E_{2}\right]=0$ then $\operatorname{Pr}\left[E_{1} \mid E_{2}\right]$ is undefined.) This represents the probability that event E_{1} occurs, given that event E_{2} has occurred. It follows immediately from the definition that

$$
\operatorname{Pr}\left[E_{1} \wedge E_{2}\right]=\operatorname{Pr}\left[E_{1} \mid E_{2}\right] \cdot \operatorname{Pr}\left[E_{2}\right]
$$

equality holds even if $\operatorname{Pr}\left[E_{2}\right]=0$ as long as we interpret multiplication by zero on the right-hand side in the obvious way.

We can now easily derive Bayes' theorem.

THEOREM A. 8 (Bayes' Theorem) If $\operatorname{Pr}\left[E_{2}\right] \neq 0$ then

$$
\operatorname{Pr}\left[E_{1} \mid E_{2}\right]=\frac{\operatorname{Pr}\left[E_{2} \mid E_{1}\right] \cdot \operatorname{Pr}\left[E_{1}\right]}{\operatorname{Pr}\left[E_{2}\right]} .
$$

PROOF This follows because

$$
\operatorname{Pr}\left[E_{1} \mid E_{2}\right]=\frac{\operatorname{Pr}\left[E_{1} \wedge E_{2}\right]}{\operatorname{Pr}\left[E_{2}\right]}=\frac{\operatorname{Pr}\left[E_{2} \wedge E_{1}\right]}{\operatorname{Pr}\left[E_{2}\right]}=\frac{\operatorname{Pr}\left[E_{2} \mid E_{1}\right] \cdot \operatorname{Pr}\left[E_{1}\right]}{\operatorname{Pr}\left[E_{2}\right]} .
$$

Let E_{1}, \ldots, E_{n} be events such that $\operatorname{Pr}\left[E_{1} \vee \cdots \vee E_{n}\right]=1$ and $\operatorname{Pr}\left[E_{i} \wedge E_{j}\right]=0$ for all $i \neq j$. That is, the $\left\{E_{i}\right\}$ partition the space of all possible events, so that with probability 1 exactly one of the events E_{i} occurs. Then for any F

$$
\operatorname{Pr}[F]=\sum_{i=1}^{n} \operatorname{Pr}\left[F \wedge E_{i}\right]
$$

A special case is when $n=2$ and $E_{2}=\bar{E}_{1}$, giving

$$
\begin{aligned}
\operatorname{Pr}[F] & =\operatorname{Pr}\left[F \wedge E_{1}\right]+\operatorname{Pr}\left[F \wedge \bar{E}_{1}\right] \\
& =\operatorname{Pr}\left[F \mid E_{1}\right] \cdot \operatorname{Pr}\left[E_{1}\right]+\operatorname{Pr}\left[F \mid \bar{E}_{1}\right] \cdot \operatorname{Pr}\left[\bar{E}_{1}\right]
\end{aligned}
$$

Taking $F=E_{1} \vee E_{2}$, we get a tighter version of the union bound:

$$
\begin{aligned}
\operatorname{Pr}\left[E_{1} \vee E_{2}\right] & =\operatorname{Pr}\left[E_{1} \vee E_{2} \mid E_{1}\right] \cdot \operatorname{Pr}\left[E_{1}\right]+\operatorname{Pr}\left[E_{1} \vee E_{2} \mid \bar{E}_{1}\right] \cdot \operatorname{Pr}\left[\bar{E}_{1}\right] \\
& \leq \operatorname{Pr}\left[E_{1}\right]+\operatorname{Pr}\left[E_{2} \mid \bar{E}_{1}\right] .
\end{aligned}
$$

Extending this to events E_{1}, \ldots, E_{n} we obtain

PROPOSITION A. 9

$$
\operatorname{Pr}\left[\bigvee_{i=1}^{k} E_{i}\right] \leq \operatorname{Pr}\left[E_{1}\right]+\sum_{i=2}^{k} \operatorname{Pr}\left[E_{i} \mid \bar{E}_{1} \wedge \cdots \wedge \bar{E}_{i-1}\right]
$$

* Useful Probability Bounds

We review some terminology and state probability bounds that are standard, but may not be encountered in a basic discrete mathematics course. The material here is used only in Section 7.3.

A (discrete, real-valued) random variable X is a variable whose value is assigned probabilistically from some finite set S of real numbers. X is nonnegative if it does not take negative values; it is a $0 / 1$-random variable if $S=\{0,1\}$. The $0 / 1$-random variables X_{1}, \ldots, X_{k} are independent if for all b_{1}, \ldots, b_{k} it holds that $\operatorname{Pr}\left[X_{1}=b_{1} \wedge \cdots \wedge X_{k}=b_{k}\right]=\prod_{i=1}^{k} \operatorname{Pr}\left[X_{i}=b_{i}\right]$.

We let $\operatorname{Exp}[X]$ denote the expectation of a random variable X; if X takes values in a set S then $\operatorname{Exp}[X] \stackrel{\text { def }}{=} \sum_{s \in S} s \cdot \operatorname{Pr}[X=s]$. One of the most important facts is that expectation is linear; for random variables X_{1}, \ldots, X_{k} (with arbitrary dependencies) we have $\operatorname{Exp}\left[\sum_{i} X_{i}\right]=\sum_{i} \operatorname{Exp}\left[X_{i}\right]$. If X_{1}, X_{2} are independent, then $\operatorname{Exp}\left[X_{i} \cdot X_{j}\right]=\operatorname{Exp}\left[X_{i}\right] \cdot \operatorname{Exp}\left[X_{j}\right]$.

Markov's inequality is useful when little is known about X.

PROPOSITION A. 10 (Markov's inequality) Let X be a non-negative random variable and $v>0$. Then $\operatorname{Pr}[X \geq v] \leq \operatorname{Exp}[X] / v$.

PROOF Say X takes values in a set S. We have

$$
\begin{aligned}
\operatorname{Exp}[X] & =\sum_{s \in S} s \cdot \operatorname{Pr}[X=s] \\
& \geq \sum_{x \in S, x<v} \operatorname{Pr}[X=s] \cdot 0+\sum_{x \in S, x \geq v} v \cdot \operatorname{Pr}[X=s] \\
& =v \cdot \operatorname{Pr}[X \geq v] .
\end{aligned}
$$

The variance of X, denoted $\operatorname{Var}[X]$, measures how much X deviates from its expectation. We have $\operatorname{Var}[X] \stackrel{\text { def }}{=} \operatorname{Exp}\left[(X-\operatorname{Exp}[X])^{2}\right]=\operatorname{Exp}\left[X^{2}\right]-\operatorname{Exp}[X]^{2}$, and one can easily show that $\operatorname{Var}[a X+b]=a^{2} \operatorname{Var}[X]$. For a $0 / 1$-random variable X_{i}, we have $\operatorname{Var}\left[X_{i}\right] \leq 1 / 4$ because in this case $\operatorname{Exp}\left[X_{i}\right]=\operatorname{Exp}\left[X_{i}^{2}\right]$ and so $\operatorname{Var}\left[X_{i}\right]=\operatorname{Exp}\left[X_{i}\right]\left(1-\operatorname{Exp}\left[X_{i}\right]\right)$, which is maximized when $\operatorname{Exp}\left[X_{i}\right]=\frac{1}{2}$.

PROPOSITION A. 11 (Chebyshev's inequality) Let X be a random variable and $\delta>0$. Then:

$$
\operatorname{Pr}[|X-\operatorname{Exp}[X]| \geq \delta] \leq \frac{\operatorname{Var}[X]}{\delta^{2}}
$$

PROOF Define the non-negative random variable $Y \stackrel{\text { def }}{=}(X-\operatorname{Exp}[X])^{2}$ and then apply Markov's inequality. So,

$$
\begin{aligned}
\operatorname{Pr}[|X-\operatorname{Exp}[X]| \geq \delta] & =\operatorname{Pr}\left[(X-\operatorname{Exp}[X])^{2} \geq \delta^{2}\right] \\
& \leq \frac{\operatorname{Exp}\left[(X-\operatorname{Exp}[X])^{2}\right]}{\delta^{2}}=\frac{\operatorname{Var}[X]}{\delta^{2}} .
\end{aligned}
$$

The 0/1-random variables X_{1}, \ldots, X_{m} are pairwise independent if for every $i \neq j$ and every $b_{i}, b_{j} \in\{0,1\}$ it holds that

$$
\operatorname{Pr}\left[X_{i}=b_{i} \wedge X_{j}=b_{j}\right]=\operatorname{Pr}\left[X_{i}=b_{i}\right] \cdot \operatorname{Pr}\left[X_{j}=b_{j}\right] .
$$

If X_{1}, \ldots, X_{m} are pairwise independent then $\operatorname{Var}\left[\sum_{i=1}^{m} X_{i}\right]=\sum_{i=1}^{m} \operatorname{Var}\left[X_{i}\right]$. (This follows since $\operatorname{Exp}\left[X_{i} \cdot X_{j}\right]=\operatorname{Exp}\left[X_{i}\right] \cdot \operatorname{Exp}\left[X_{j}\right]$ when $i \neq j$, using pairwise independence.) An important corollary of Chebyshev's inequality follows.

COROLLARY A. 12 Let X_{1}, \ldots, X_{m} be pairwise-independent random variables with the same expectation μ and variance σ^{2}. Then for every $\delta>0$,

$$
\operatorname{Pr}\left[\left|\frac{\sum_{i=1}^{m} X_{i}}{m}-\mu\right| \geq \delta\right] \leq \frac{\sigma^{2}}{\delta^{2} m}
$$

PROOF By linearity of expectation, $\operatorname{Exp}\left[\sum_{i=1}^{m} X_{i} / m\right]=\mu$. Applying Chebyshev's inequality to the random variable $\sum_{i=1}^{m} X_{i} / m$, we have

$$
\operatorname{Pr}\left[\left|\frac{\sum_{i=1}^{m} X_{i}}{m}-\mu\right| \geq \delta\right] \leq \frac{\operatorname{Var}\left[\frac{1}{m} \cdot \sum_{i=1}^{m} X_{i}\right]}{\delta^{2}}
$$

Using pairwise independence, it follows that

$$
\operatorname{Var}\left[\frac{1}{m} \cdot \sum_{i=1}^{m} X_{i}\right]=\frac{1}{m^{2}} \sum_{i=1}^{m} \operatorname{Var}\left[X_{i}\right]=\frac{1}{m^{2}} \sum_{i=1}^{m} \sigma^{2}=\frac{\sigma^{2}}{m} .
$$

The inequality is obtained by combining the above two equations.

Say 0/1-random variables X_{1}, \ldots, X_{m} each provides an estimate of some fixed (unknown) bit b. That is, $\operatorname{Pr}\left[X_{i}=b\right] \geq 1 / 2+\varepsilon$ for all i, where $\varepsilon>0$.

We can estimate b by looking at the value of X_{1}; this estimate will be correct with probability $\operatorname{Pr}\left[X_{1}=b\right]$. A better estimate can be obtained by looking at the values of X_{1}, \ldots, X_{m} and taking the value that occurs the majority of the time. We analyze how well this does when X_{1}, \ldots, X_{m} are pairwise independent.

PROPOSITION A. 13 Fix $\varepsilon>0$ and $b \in\{0,1\}$, and let $\left\{X_{i}\right\}$ be pairwiseindependent, 0/1-random variables for which $\operatorname{Pr}\left[X_{i}=b\right] \geq \frac{1}{2}+\varepsilon$ for all i. Consider the process in which m values X_{1}, \ldots, X_{m} are recorded and X is set to the value that occurs a strict majority of the time. Then

$$
\operatorname{Pr}[X \neq b] \leq \frac{1}{4 \cdot \varepsilon^{2} \cdot m}
$$

PROOF Assume $b=1$; by symmetry, this is without loss of generality. Then $\operatorname{Exp}\left[X_{i}\right]=\frac{1}{2}+\varepsilon$. Let X denote the strict majority of the $\left\{X_{i}\right\}$ as in the proposition, and note that $X \neq 1$ if and only if $\sum_{i=1}^{m} X_{i} \leq m / 2$. So

$$
\begin{aligned}
\operatorname{Pr}[X \neq 1] & =\operatorname{Pr}\left[\sum_{i=1}^{m} X_{i} \leq m / 2\right] \\
& =\operatorname{Pr}\left[\frac{\sum_{i=1}^{m} X_{i}}{m}-\frac{1}{2} \leq 0\right] \\
& =\operatorname{Pr}\left[\frac{\sum_{i=1}^{m} X_{i}}{m}-\left(\frac{1}{2}+\varepsilon\right) \leq-\varepsilon\right] \\
& \leq \operatorname{Pr}\left[\left|\frac{\sum_{i=1}^{m} X_{i}}{m}-\left(\frac{1}{2}+\varepsilon\right)\right| \geq \varepsilon\right]
\end{aligned}
$$

Since $\operatorname{Var}\left[X_{i}\right] \leq 1 / 4$ for all i, applying the previous corollary shows that $\operatorname{Pr}[X \neq 1] \leq \frac{1}{4 \varepsilon^{2} m}$ as claimed.

A better bound is obtained if the $\left\{X_{i}\right\}$ are independent:

PROPOSITION A. 14 (Chernoff bound) Fix $\varepsilon>0$ and $b \in\{0,1\}$, and let $\left\{X_{i}\right\}$ be independent $0 / 1$-random variables with $\operatorname{Pr}\left[X_{i}=b\right]=\frac{1}{2}+\varepsilon$ for all i. The probability that their majority value is not b is at most $e^{-\varepsilon^{2} m / 2}$.

A. 4 The "Birthday" Problem

If we choose q elements y_{1}, \ldots, y_{q} uniformly from a set of size N, what is the probability that there exist distinct i, j with $y_{i}=y_{j}$? We refer to the stated
event as a collision, and denote the probability of this event by $\operatorname{coll}(q, N)$. This problem is related to the so-called birthday problem, which asks what size group of people we need such that with probability $1 / 2$ some pair of people in the group share a birthday. To see the relationship, let y_{i} denote the birthday of the i th person in the group. If there are q people in the group then we have q values y_{1}, \ldots, y_{q} chosen uniformly from $\{1, \ldots, 365\}$, making the simplifying assumption that birthdays are uniformly and independently distributed among the 365 days of a non-leap year. Furthermore, matching birthdays correspond to a collision, i.e., distinct i, j with $y_{i}=y_{j}$. So the desired solution to the birthday problem is given by the minimal (integer) value of q for which coll $(q, 365) \geq 1 / 2$. (The answer may surprise you-taking $q=23$ people suffices!)

In this section, we prove lower and upper bounds on $\operatorname{coll}(q, N)$. Taken together and summarized at a high level, they show that if $q<\sqrt{N}$ then the probability of a collision is $\Theta\left(q^{2} / N\right)$; alternately, for $q=\Theta(\sqrt{N})$ the probability of a collision is constant.

An upper bound for the collision probability is easy to obtain.

LEMMA A. 15 Fix a positive integer N, and say q elements y_{1}, \ldots, y_{q} are chosen uniformly and independently at random from a set of size N. Then the probability that there exist distinct i, j with $y_{i}=y_{j}$ is at most $\frac{q^{2}}{2 N}$. That is,

$$
\operatorname{coll}(q, N) \leq \frac{q^{2}}{2 N}
$$

PROOF The proof is a simple application of the union bound (Proposition A.7). Recall that a collision means that there exist distinct i, j with $y_{i}=y_{j}$. Let Coll denote the event of a collision, and let $\mathrm{Coll}_{i, j}$ denote the event that $y_{i}=y_{j}$. It is immediate that $\operatorname{Pr}\left[\mathrm{Coll}_{i, j}\right]=1 / N$ for any distinct i, j. Furthermore, Coll $=\bigvee_{i \neq j}$ Coll $_{i, j}$ and so repeated application of the union bound implies that

$$
\begin{aligned}
\operatorname{Pr}[\mathrm{Coll}] & =\operatorname{Pr}\left[\bigvee_{i \neq j} \text { Coll }_{i, j}\right] \\
& \leq \sum_{i \neq j} \operatorname{Pr}\left[\mathrm{Coll}_{i, j}\right]=\binom{q}{2} \cdot \frac{1}{N} \leq \frac{q^{2}}{2 N} .
\end{aligned}
$$

LEMMA A. 16 Fix a positive integer N, and say $q \leq \sqrt{2 N}$ elements y_{1}, \ldots, y_{q} are chosen uniformly and independently at random from a set of size N. Then the probability that there exist distinct i, j with $y_{i}=y_{j}$ is at least $\frac{q(q-1)}{4 N}$. In fact,

$$
\operatorname{coll}(q, N) \geq 1-e^{-q(q-1) / 2 N} \geq \frac{q(q-1)}{4 N}
$$

PROOF Recall that a collision means that there exist distinct i, j with $y_{i}=y_{j}$. Let Coll denote this event. Let NoColl ${ }_{i}$ be the event that there is no collision among y_{1}, \ldots, y_{i}; that is, $y_{j} \neq y_{k}$ for all $j<k \leq i$. Then NoColl ${ }_{q}=\overline{\mathrm{Coll}}$ is the event that there is no collision at all.

If NoColl ${ }_{q}$ occurs then NoColl_{i} must also have occurred for all $i \leq q$. Thus,

$$
\operatorname{Pr}\left[\mathrm{NoColl}_{q}\right]=\operatorname{Pr}\left[\mathrm{NoColl}_{1}\right] \cdot \operatorname{Pr}\left[\mathrm{NoColl}_{2} \mid \mathrm{NoColl}_{1}\right] \cdots \operatorname{Pr}\left[\mathrm{NoColl}_{q} \mid \mathrm{NoColl}_{q-1}\right] .
$$

Now, $\operatorname{Pr}\left[\mathrm{NoColl}_{1}\right]=1$ since y_{1} cannot collide with itself. Furthermore, if event NoColl ${ }_{i}$ occurs then $\left\{y_{1}, \ldots, y_{i}\right\}$ contains i distinct values; so, the probability that y_{i+1} collides with one of these values is $\frac{i}{N}$ and hence the probability that y_{i+1} does not collide with any of these values is $1-\frac{i}{N}$. This means

$$
\operatorname{Pr}\left[\operatorname{NoColl}_{i+1} \mid \operatorname{NoColl}_{i}\right]=1-\frac{i}{N}
$$

and so

$$
\operatorname{Pr}\left[\mathrm{NoColl}_{q}\right]=\prod_{i=1}^{q-1}\left(1-\frac{i}{N}\right)
$$

Since $i / N<1$ for all i, we have $1-\frac{i}{N} \leq e^{-i / N}$ (by Inequality A.3) and so

$$
\operatorname{Pr}\left[\mathrm{NoColl}_{q}\right] \leq \prod_{i=1}^{q-1} e^{-i / N}=e^{-\sum_{i=1}^{q-1}(i / N)}=e^{-q(q-1) / 2 N}
$$

We conclude that

$$
\operatorname{Pr}[\text { Coll }]=1-\operatorname{Pr}\left[\operatorname{NoColl}_{q}\right] \geq 1-e^{-q(q-1) / 2 N} \geq \frac{q(q-1)}{4 N}
$$

using Inequality A. 4 in the last step (note that $q(q-1) / 2 N<1$).

A. 5 *Finite Fields

We use finite fields only sparingly in the book, but we include a definition and some basic facts for completeness. Further details can be found in any textbook on abstract algebra.

