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Appendix A

Mathematical Background

A.1 Identities and Inequalities

We list some standard identities and inequalities that are used at various
points throughout the text.

THEOREM A.1 (Binomial expansion theorem) Let x,y be real num-
bers, and let n be a positive integer. Then

(z+y)" = Zn: (?) T

i=0
PROPOSITION A.2 For all x > 1 it holds that (1 —1/z)* < e~ 1.
PROPOSITION A.3 For all x it holds that 1 —xz < e %.

PROPOSITION A.4 For all x with 0 < x <1 it holds that

1
e‘””ﬁl—(l— )-:vgl—x.
e 2

A.2 Asymptotic Notation

We use standard notation for expressing asymptotic behavior of functions.

DEFINITION A.5 Let f(n),g(n) be functions from non-negative integers
to non-negative reals. Then:

e f(n) = O(g(n)) means that there exist positive integers ¢ and n' such
that for all m > n' it holds that f(n) <c-g(n).
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e f(n) = Q(g(n)) means that there exist positive integers ¢ and n' such
that for all m > n' it holds that f(n) > c- g(n).

e f(n) = ©(g(n)) means that there exist positive integers cy,ce, and n’
such that for all m > n' it holds that c1 - g(n) < f(n) < c2-g(n).

e f(n)=o0(g(n)) means that lim,_, ;gz; =0.

f(n)

g(n) = O%

o f(n)=w(g(n)) means that lim,

Example A.6
Let f(n) = n* 4+ 3n + 500. Then:

e f(n) = O(nd). In fact, f(n) = o(n®).

e f(n) =Q(nlogn). In fact, f(n) = w(nlogn).

A.3 Basic Probability

We assume the reader is familiar with basic probability theory, on the level
of what is covered in a typical undergraduate course on discrete mathematics.
Here we simply remind the reader of some notation and basic facts.

If E is an event, then E denotes the complement of that event; i.e., E is the
event that E does not occur. By definition, Pr[E] = 1 — Pr[E]. If E; and F»
are events, then E; A E5 denotes their conjunction; i.e., 1 A E3 is the event
that both Ey and Ey occur. By definition, Pr[E; A E3] < Pr[F4]. Events E;
and Fy are said to be independent if Pr[Ey A Es] = Pr[E;] - Pr[Es].

If 1 and Es; are events, then E; V FEs denotes the disjunction of F; and
FEs; that is, E7 V E5 is the event that either E; or Es occurs. It follows from
the definition that Pr[E; V E3] > Pr[E;]. The union bound is often a very
useful upper bound of this quantity.

PROPOSITION A.7 (Union Bound)

PI’[El V Eg] < Pl”[El] + PI’[EQ]
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Repeated application of the union bound for any events F1, ..., Ej gives

Pr|ViL B < zk: Pr[E).

The conditional probability of E1 given Ea, denoted Pr[F; | Es], is defined as

def Pr|E1 A Ea
PI‘[El | EQ] = [PI'[Eg] ]

as long as Pr[FEs] # 0. (If Pr[Es] = 0 then Pr[E; | E2] is undefined.) This rep-
resents the probability that event F; occurs, given that event Es has occurred.
It follows immediately from the definition that

PI‘[El A EQ] = PI‘[El | EQ] . PI‘[EQ] y

equality holds even if Pr[Es] = 0 as long as we interpret multiplication by
zero on the right-hand side in the obvious way.
We can now easily derive Bayes’ theorem.

THEOREM A.8 (Bayes’ Theorem) If Pr[E;] # 0 then

PI’[EQ | El] Pl”[El]

PI’[El | Eg] = PI‘[EQ]

PROOF This follows because
o PI‘[El A EQ] . PI‘[EQ A El] PI‘[EQ | El] . PI‘[El]

PriBul Bl = pip) T eims) Pr[Ey]

Let E4, ..., E, be events such that Pr[EyV---VE,] =1 and Pr[E;AE;] =0
for all ¢ # j. That is, the {E;} partition the space of all possible events, so
that with probability 1 exactly one of the events E; occurs. Then for any F'

Pr[F] = iPr[F A E;.

A special case is when n = 2 and Ey = E, giving
Pr[F] = Pr[F A E1] + Pr[F A Ey]
= Pr[F | B1] - Pr[Ex] + Pr[F | Eq] - Pr[En].
Taking F' = E; V E5, we get a tighter version of the union bound:

PI‘[El \Y EQ] = PI‘[El V E2 | El] . PI‘[El] + PI‘[El vV EQ | El] . PI‘[El]
< PI’[El] + PT[EQ | El]
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Extending this to events E1, ..., F, we obtain

PROPOSITION A.9

k
Pr {v;gzl El} < Pl”[El] + ZPY[Ez | El VANKIERIVAN Ei—l]-
=2

* Useful Probability Bounds

We review some terminology and state probability bounds that are stan-
dard, but may not be encountered in a basic discrete mathematics course.
The material here is used only in Section 7.3.

A (discrete, real-valued) random variable X is a variable whose value is
assigned probabilistically from some finite set S of real numbers. X is non-
negative if it does not take negative values; it is a 0/l-random variable
if S = {0,1}. The 0/1-random variables X3, ..., X} are independent if for
all by, ..., by it holds that Pr[X; = by A--- A X = bg] = []1_, Pr[X; = b;].

We let Exp[X] denote the expectation of a random variable X; if X takes
values in a set S then Exp[X] def > scss - Pr[X = s]. One of the most
important facts is that expectation is linear; for random variables X7, ..., Xk
(with arbitrary dependencies) we have Exp[}_, X;] = >, Exp[X;]. If X1, X»
are independent, then Exp[X; - X,] = Exp[X;] - Exp[X}].

Markov’s inequality is useful when little is known about X.

PROPOSITION A.10 (Markov’s inequality)  Let X be a non-negative
random variable and v > 0. Then Pr[X > v] < Exp[X]/v.

PROOF Say X takes values in a set S. We have

Exp[X] = Zs -Pr[X =]

seS

> Z Pr[X =s]-0+ Z v-Pr[X =]
z€S, x<v zeS, x>v

=wv-Pr[X >

The variance of X, denoted Var[X], measures how much X deviates from

its expectation. We have Var[X] % Exp[(X — Exp[X])?] = Exp[X?] — Exp[X]2,

and one can easily show that Var[aX + b] = a*Var[X]. For a 0/1-random
variable X;, we have Var[X;] < 1/4 because in this case Exp[X;] = Exp[X?]

and so Var[X;] = Exp[X;](1—Exp[X;]), which is maximized when Exp[X;] = .
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PROPOSITION A.11 (Chebyshev’s inequality)  Let X be a random
variable and 6 > 0. Then:

Var[X]

PrIX — BxplX]| 2 0] < 5.

PROOF  Define the non-negative random variable Y &' (X —Exp[X])? and
then apply Markov’s inequality. So,

Pr[|X — Exp[X]| > 6] = Pr[(X — Exp[X])* > 7]

Exp[(X — Exp[X])?] Var[X]
= 52 I -
The 0/1-random variables X7, ..., X,, are pairwise independent if for every

i # j and every b;,b; € {0,1} it holds that
PI‘[XZ = bz A Xj = bj] = PI‘[Xl = bl] . PI‘[Xj = bj]

If Xi,...,X,, are pairwise independent then Var[} " | X;] = >, Var[X;].
(This follows since Exp[X; - X ;] = Exp[X;] - Exp[X;] when ¢ # j, using pairwise
independence.) An important corollary of Chebyshev’s inequality follows.

COROLLARY A.12 Let X4,...,X,, be pairwise-independent random
variables with the same expectation 1 and variance o>. Then for every § > 0,

moX
Pr[ 21:1

m
PROOF By linearity of expectation, Exp[> ., X;/m] = p. Applying
Chebyshev’s inequality to the random variable Y., X;/m, we have

m . 1 . m .
Pr HZi_l Xi —M’ > 5] < Var [ - 30, X '
m

o2

>l < .
M'_5]_52m

52
Using pairwise independence, it follows that

m

1 & 1 — 1 2
m; XZ]—mQ; Var[XZ]:m2Z:72:;

=1

Var

The inequality is obtained by combining the above two equations.

Say 0/1-random variables Xi,...,X,, each provides an estimate of some
fixed (unknown) bit b. That is, Pr[X; = b] > 1/2 + ¢ for all 4, where ¢ > 0.
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We can estimate b by looking at the value of X7; this estimate will be correct
with probability Pr[X; = b]. A better estimate can be obtained by looking

at the values of X1,...,X,, and taking the value that occurs the majority
of the time. We analyze how well this does when X;,...,X,, are pairwise
independent.

PROPOSITION A.13 Fize >0 andb € {0,1}, and let {X;} be pairwise-
independent, 0/1-random wvariables for which Pr[X; = b] > % + ¢ for all i.

Consider the process in which m values X1, ..., X,, are recorded and X is set
to the value that occurs a strict majority of the time. Then
X AB <,
T 4-e2.

PROOF Assume b = 1; by symmetry, this is without loss of generality.
Then Exp[X;] = } +¢. Let X denote the strict majority of the {X;} as in the
proposition, and note that X # 1 if and only if >, X; <m/2. So

Pr[X #1] =Pr iXi < m/21

Li=1

Zz lX

TR

1

Bh
=Pr ZZ IX ( —I—E) ]
_leX <1+a> Zs}

m 2
Since Var[X;] < 1/4 for all i, applying the previous corollary shows that
Pr[X #1] < , i as claimed.

A better bound is obtained if the {X;} are independent:

PROPOSITION A.14 (Chernoff bound) Fize > 0 and b € {0,1},
and let {X;} be independent 0/1-random variables with Pr[X; = b] = | +¢

for alli. The probability that their magjority value is not b is at most e=em/2,

A.4 The “Birthday” Problem

If we choose g elements yy, . . ., Y, uniformly from a set of size IV, what is the
probability that there exist distinct 4,7 with y; = y;7 We refer to the stated
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event as a collision, and denote the probability of this event by coll(g, N).
This problem is related to the so-called birthday problem, which asks what
size group of people we need such that with probability 1/2 some pair of
people in the group share a birthday. To see the relationship, let y; denote
the birthday of the ith person in the group. If there are ¢ people in the group
then we have ¢ values y1, ..., ¥y, chosen uniformly from {1,...,365}, making
the simplifying assumption that birthdays are uniformly and independently
distributed among the 365 days of a non-leap year. Furthermore, matching
birthdays correspond to a collision, i.e., distinct 4,7 with y; = y;. So the
desired solution to the birthday problem is given by the minimal (integer)
value of ¢ for which coll(g, 365) > 1/2. (The answer may surprise you—taking
g = 23 people suffices!)

In this section, we prove lower and upper bounds on coll(g, N). Taken
together and summarized at a high level, they show that if ¢ < /N then
the probability of a collision is ©(¢?/N); alternately, for ¢ = O(v/N) the
probability of a collision is constant.

An upper bound for the collision probability is easy to obtain.

LEMMA A.15 Fiz a positive integer N, and say q elements y1,...,y, are
chosen uniformly and independently at random from a set of size N. Then the

probability that there exist distinct i, 7 with y; = y; ts at most 2‘1]2\, . That 1s,

q2
(g, Ny < * .
coll(q, )_2N

PROOF  The proof is a simple application of the union bound (Proposi-
tion A.7). Recall that a collision means that there exist distinct 4,j with
yi = y;. Let Coll denote the event of a collision, and let Coll; ; denote the
event that y; = y;. It is immediate that Pr[Coll; ;] = 1/N for any distinct
i, 7. Furthermore, Coll = \/i# Coll; ; and so repeated application of the union
bound implies that

Pr[Coll] = Pr | \/ Coll; ;
i£]

1
< S Pr(Coll ;] = (g) Sy S 2qu
i#£j
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LEMMA A.16 Fiz a positive integer N, and say ¢ < V2N elements
Y1,-..,Yq are chosen uniformly and independently at random from a set of
size N. Then the probability that there exist distinct i,j with y; = y; 15 at

least q(fol) . In fact,

co —q(q— g—1)
a. N) > 1 — e 9(a—D/2N > q( '
(q7 ) = € N

PROOF  Recall that a collision means that there exist distinct ¢, 5 with
yi = yj. Let Coll denote this event. Let NoColl; be the event that there
is no collision among y,...,ys; that is, y; # yx for all j < k < 4. Then
NoColl, = Coll is the event that there is no collision at all.

If NoColl, occurs then NoColl; must also have occurred for all ¢ < g. Thus,

Pr[NoColly] = Pr[NoColl;] - Pr[NoCollz | NoColl;] - - - Pr[NoColl, | NoColl,_4].

Now, Pr[NoColl;] = 1 since y; cannot collide with itself. Furthermore, if event
NoColl; occurs then {y1,...,y;} contains ¢ distinct values; so, the probability
that y;41 collides with one of these values is ]i, and hence the probability that
yi+1 does not collide with any of these values is 1 — ]i, This means

Pr[NoColl;s; | NoColl;] = 1 — zlv

and so
q—1 i
Pr[NoColl,] = 1-— .
r[NoColl,] Zl;[l < N)
Since i/N < 1 for all i, we have 1 — } < e~/N (by Inequality A.3) and so

q—1
Pr[NoColly] < [[ e/ =~ TISE/N) = gmala=D)/2N,
i=1
We conclude that
-1
Pr[Coll] = 1 — Pr[NoColl,] > 1 — e~ %a=1D/2N > q(iN ) ,
using Inequality A.4 in the last step (note that g(¢ —1)/2N < 1).

A.5 *Finite Fields

We use finite fields only sparingly in the book, but we include a definition
and some basic facts for completeness. Further details can be found in any
textbook on abstract algebra.



