
Appendix A

Mathematical Background

A.1 Identities and Inequalities

We list some standard identities and inequalities that are used at various
points throughout the text.

THEOREM A.1 (Binomial expansion theorem) Let x, y be real num-
bers, and let n be a positive integer. Then

(x + y)n =

n∑

i=0

(
n

i

)
xi yn−i.

PROPOSITION A.2 For all x ≥ 1 it holds that (1− 1/x)x ≤ e−1.

PROPOSITION A.3 For all x it holds that 1− x ≤ e−x.

PROPOSITION A.4 For all x with 0 ≤ x ≤ 1 it holds that

e−x ≤ 1−
(
1− 1

e

)
· x ≤ 1− x

2
.

A.2 Asymptotic Notation

We use standard notation for expressing asymptotic behavior of functions.

DEFINITION A.5 Let f(n), g(n) be functions from non-negative integers
to non-negative reals. Then:

• f(n) = O(g(n)) means that there exist positive integers c and n′ such
that for all n > n′ it holds that f(n) ≤ c · g(n).
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538 Introduction to Modern Cryptography

• f(n) = Ω(g(n)) means that there exist positive integers c and n′ such
that for all n > n′ it holds that f(n) ≥ c · g(n).

• f(n) = Θ(g(n)) means that there exist positive integers c1, c2, and n′

such that for all n > n′ it holds that c1 · g(n) ≤ f(n) ≤ c2 · g(n).

• f(n) = o(g(n)) means that limn→∞
f(n)
g(n) = 0.

• f(n) = ω(g(n)) means that limn→∞
f(n)
g(n) =∞.

Example A.6

Let f(n) = n4 + 3n+ 500. Then:

• f(n) = O(n4).

• f(n) = O(n5). In fact, f(n) = o(n5).

• f(n) = Ω(n3 logn). In fact, f(n) = ω(n3 logn).

• f(n) = Θ(n4).

♦

A.3 Basic Probability

We assume the reader is familiar with basic probability theory, on the level
of what is covered in a typical undergraduate course on discrete mathematics.
Here we simply remind the reader of some notation and basic facts.

If E is an event, then Ē denotes the complement of that event; i.e., Ē is the
event that E does not occur. By definition, Pr[E] = 1− Pr[Ē]. If E1 and E2

are events, then E1 ∧ E2 denotes their conjunction; i.e., E1 ∧ E2 is the event
that both E1 and E2 occur. By definition, Pr[E1 ∧ E2] ≤ Pr[E1]. Events E1

and E2 are said to be independent if Pr[E1 ∧ E2] = Pr[E1] · Pr[E2].

If E1 and E2 are events, then E1 ∨ E2 denotes the disjunction of E1 and
E2; that is, E1 ∨E2 is the event that either E1 or E2 occurs. It follows from
the definition that Pr[E1 ∨ E2] ≥ Pr[E1]. The union bound is often a very
useful upper bound of this quantity.

PROPOSITION A.7 (Union Bound)

Pr[E1 ∨E2] ≤ Pr[E1] + Pr[E2].
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Repeated application of the union bound for any events E1, . . . , Ek gives

Pr
[∨k

i=1 Ei

]
≤

k∑

i=1

Pr[Ei].

The conditional probability of E1 given E2, denoted Pr[E1 | E2], is defined as

Pr[E1 | E2]
def
=

Pr[E1 ∧ E2]

Pr[E2]

as long as Pr[E2] 6= 0. (If Pr[E2] = 0 then Pr[E1 | E2] is undefined.) This rep-
resents the probability that event E1 occurs, given that event E2 has occurred.
It follows immediately from the definition that

Pr[E1 ∧E2] = Pr[E1 | E2] · Pr[E2] ;

equality holds even if Pr[E2] = 0 as long as we interpret multiplication by
zero on the right-hand side in the obvious way.

We can now easily derive Bayes’ theorem.

THEOREM A.8 (Bayes’ Theorem) If Pr[E2] 6= 0 then

Pr[E1 | E2] =
Pr[E2 | E1] · Pr[E1]

Pr[E2]
.

PROOF This follows because

Pr[E1 | E2] =
Pr[E1 ∧ E2]

Pr[E2]
=

Pr[E2 ∧ E1]

Pr[E2]
=

Pr[E2 | E1] · Pr[E1]

Pr[E2]
.

Let E1, . . . , En be events such that Pr[E1∨· · ·∨En] = 1 and Pr[Ei∧Ej ] = 0
for all i 6= j. That is, the {Ei} partition the space of all possible events, so
that with probability 1 exactly one of the events Ei occurs. Then for any F

Pr[F ] =

n∑

i=1

Pr[F ∧Ei].

A special case is when n = 2 and E2 = Ē1, giving

Pr[F ] = Pr[F ∧ E1] + Pr[F ∧ Ē1]

= Pr[F | E1] · Pr[E1] + Pr[F | Ē1] · Pr[Ē1].

Taking F = E1 ∨E2, we get a tighter version of the union bound:

Pr[E1 ∨ E2] = Pr[E1 ∨ E2 | E1] · Pr[E1] + Pr[E1 ∨ E2 | Ē1] · Pr[Ē1]

≤ Pr[E1] + Pr[E2 | Ē1].
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Extending this to events E1, . . . , En we obtain

PROPOSITION A.9

Pr
[∨k

i=1 Ei

]
≤ Pr[E1] +

k∑

i=2

Pr[Ei | Ē1 ∧ · · · ∧ Ēi−1].

* Useful Probability Bounds

We review some terminology and state probability bounds that are stan-
dard, but may not be encountered in a basic discrete mathematics course.
The material here is used only in Section 7.3.

A (discrete, real-valued) random variable X is a variable whose value is
assigned probabilistically from some finite set S of real numbers. X is non-
negative if it does not take negative values; it is a 0/1-random variable
if S = {0, 1}. The 0/1-random variables X1, . . . , Xk are independent if for

all b1, . . . , bk it holds that Pr[X1 = b1 ∧ · · · ∧Xk = bk] =
∏k

i=1 Pr[Xi = bi].
We let Exp[X ] denote the expectation of a random variable X ; if X takes

values in a set S then Exp[X ]
def
=
∑

s∈S s · Pr[X = s]. One of the most
important facts is that expectation is linear ; for random variables X1, . . . , Xk

(with arbitrary dependencies) we have Exp[
∑

iXi] =
∑

i Exp[Xi]. If X1, X2

are independent, then Exp[Xi ·Xj] = Exp[Xi] · Exp[Xj ].
Markov’s inequality is useful when little is known about X .

PROPOSITION A.10 (Markov’s inequality) Let X be a non-negative
random variable and v > 0. Then Pr[X ≥ v] ≤ Exp[X ]/v.

PROOF Say X takes values in a set S. We have

Exp[X ] =
∑

s∈S
s · Pr[X = s]

≥
∑

x∈S, x<v

Pr[X = s] · 0 +
∑

x∈S, x≥v
v · Pr[X = s]

= v · Pr[X ≥ v].

The variance of X , denoted Var[X ], measures how much X deviates from

its expectation. We have Var[X ]
def
= Exp[(X−Exp[X ])2] = Exp[X2]−Exp[X ]2,

and one can easily show that Var[aX + b] = a2Var[X ]. For a 0/1-random
variable Xi, we have Var[Xi] ≤ 1/4 because in this case Exp[Xi] = Exp[X2

i ]
and so Var[Xi] = Exp[Xi](1−Exp[Xi]), which is maximized when Exp[Xi] =

1
2 .



Mathematical Background 541

PROPOSITION A.11 (Chebyshev’s inequality) Let X be a random
variable and δ > 0. Then:

Pr[|X − Exp[X ]| ≥ δ] ≤ Var[X ]

δ2
.

PROOF Define the non-negative random variable Y
def
= (X−Exp[X ])2 and

then apply Markov’s inequality. So,

Pr[|X − Exp[X ]| ≥ δ] = Pr[(X − Exp[X ])2 ≥ δ2]

≤ Exp[(X − Exp[X ])2]

δ2
=

Var[X ]

δ2
.

The 0/1-random variables X1, . . . , Xm are pairwise independent if for every
i 6= j and every bi, bj ∈ {0, 1} it holds that

Pr[Xi = bi ∧ Xj = bj] = Pr[Xi = bi] · Pr[Xj = bj ].

If X1, . . . , Xm are pairwise independent then Var[
∑m

i=1 Xi] =
∑m

i=1 Var[Xi].
(This follows since Exp[Xi ·Xj] = Exp[Xi] ·Exp[Xj ] when i 6= j, using pairwise
independence.) An important corollary of Chebyshev’s inequality follows.

COROLLARY A.12 Let X1, . . . , Xm be pairwise-independent random
variables with the same expectation µ and variance σ2. Then for every δ > 0,

Pr

[ ∣∣∣∣
∑m

i=1 Xi

m
− µ

∣∣∣∣ ≥ δ

]
≤ σ2

δ2m
.

PROOF By linearity of expectation, Exp[
∑m

i=1 Xi/m] = µ. Applying
Chebyshev’s inequality to the random variable

∑m
i=1 Xi/m, we have

Pr

[ ∣∣∣∣
∑m

i=1 Xi

m
− µ

∣∣∣∣ ≥ δ

]
≤ Var

[
1
m ·
∑m

i=1 Xi

]

δ2
.

Using pairwise independence, it follows that

Var

[
1

m
·

m∑

i=1

Xi

]
=

1

m2

m∑

i=1

Var[Xi] =
1

m2

m∑

i=1

σ2 =
σ2

m
.

The inequality is obtained by combining the above two equations.

Say 0/1-random variables X1, . . . , Xm each provides an estimate of some
fixed (unknown) bit b. That is, Pr[Xi = b] ≥ 1/2 + ε for all i, where ε > 0.
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We can estimate b by looking at the value of X1; this estimate will be correct
with probability Pr[X1 = b]. A better estimate can be obtained by looking
at the values of X1, . . . , Xm and taking the value that occurs the majority
of the time. We analyze how well this does when X1, . . . , Xm are pairwise
independent.

PROPOSITION A.13 Fix ε > 0 and b ∈ {0, 1}, and let {Xi} be pairwise-
independent, 0/1-random variables for which Pr[Xi = b] ≥ 1

2 + ε for all i.
Consider the process in which m values X1, . . . , Xm are recorded and X is set
to the value that occurs a strict majority of the time. Then

Pr[X 6= b] ≤ 1

4 · ε2 ·m.

PROOF Assume b = 1; by symmetry, this is without loss of generality.
Then Exp[Xi] =

1
2 + ε. Let X denote the strict majority of the {Xi} as in the

proposition, and note that X 6= 1 if and only if
∑m

i=1 Xi ≤ m/2. So

Pr[X 6= 1] = Pr

[
m∑

i=1

Xi ≤ m/2

]

= Pr

[∑m
i=1 Xi

m
− 1

2
≤ 0

]

= Pr

[∑m
i=1 Xi

m
−
(
1

2
+ ε

)
≤ −ε

]

≤ Pr

[∣∣∣∣
∑m

i=1 Xi

m
−
(
1

2
+ ε

)∣∣∣∣ ≥ ε

]
.

Since Var[Xi] ≤ 1/4 for all i, applying the previous corollary shows that
Pr[X 6= 1] ≤ 1

4ε2m as claimed.

A better bound is obtained if the {Xi} are independent:

PROPOSITION A.14 (Chernoff bound) Fix ε > 0 and b ∈ {0, 1},
and let {Xi} be independent 0/1-random variables with Pr[Xi = b] = 1

2 + ε

for all i. The probability that their majority value is not b is at most e−ε
2m/2.

A.4 The “Birthday” Problem

If we choose q elements y1, . . . , yq uniformly from a set of size N , what is the
probability that there exist distinct i, j with yi = yj? We refer to the stated
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event as a collision, and denote the probability of this event by coll(q,N).
This problem is related to the so-called birthday problem, which asks what
size group of people we need such that with probability 1/2 some pair of
people in the group share a birthday. To see the relationship, let yi denote
the birthday of the ith person in the group. If there are q people in the group
then we have q values y1, . . . , yq chosen uniformly from {1, . . . , 365}, making
the simplifying assumption that birthdays are uniformly and independently
distributed among the 365 days of a non-leap year. Furthermore, matching
birthdays correspond to a collision, i.e., distinct i, j with yi = yj . So the
desired solution to the birthday problem is given by the minimal (integer)
value of q for which coll(q, 365) ≥ 1/2. (The answer may surprise you—taking
q = 23 people suffices!)

In this section, we prove lower and upper bounds on coll(q,N). Taken
together and summarized at a high level, they show that if q <

√
N then

the probability of a collision is Θ(q2/N); alternately, for q = Θ(
√
N) the

probability of a collision is constant.

An upper bound for the collision probability is easy to obtain.

LEMMA A.15 Fix a positive integer N , and say q elements y1, . . . , yq are
chosen uniformly and independently at random from a set of size N . Then the

probability that there exist distinct i, j with yi = yj is at most q2

2N . That is,

coll(q,N) ≤ q2

2N
.

PROOF The proof is a simple application of the union bound (Proposi-
tion A.7). Recall that a collision means that there exist distinct i, j with
yi = yj. Let Coll denote the event of a collision, and let Colli,j denote the
event that yi = yj. It is immediate that Pr[Colli,j ] = 1/N for any distinct
i, j. Furthermore, Coll =

∨
i6=j Colli,j and so repeated application of the union

bound implies that

Pr [Coll] = Pr


∨

i6=j

Colli,j




≤
∑

i6=j

Pr [Colli,j ] =

(
q

2

)
· 1
N
≤ q2

2N
.
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LEMMA A.16 Fix a positive integer N , and say q ≤
√
2N elements

y1, . . . , yq are chosen uniformly and independently at random from a set of
size N . Then the probability that there exist distinct i, j with yi = yj is at

least q(q−1)
4N . In fact,

coll(q,N) ≥ 1− e−q(q−1)/2N ≥ q(q − 1)

4N
.

PROOF Recall that a collision means that there exist distinct i, j with
yi = yj. Let Coll denote this event. Let NoColli be the event that there
is no collision among y1, . . . , yi; that is, yj 6= yk for all j < k ≤ i. Then
NoCollq = Coll is the event that there is no collision at all.

If NoCollq occurs then NoColli must also have occurred for all i ≤ q. Thus,

Pr[NoCollq] = Pr[NoColl1] · Pr[NoColl2 | NoColl1] · · ·Pr[NoCollq | NoCollq−1].
Now, Pr[NoColl1] = 1 since y1 cannot collide with itself. Furthermore, if event
NoColli occurs then {y1, . . . , yi} contains i distinct values; so, the probability
that yi+1 collides with one of these values is i

N and hence the probability that

yi+1 does not collide with any of these values is 1− i
N . This means

Pr[NoColli+1 | NoColli] = 1− i

N
,

and so

Pr[NoCollq] =

q−1∏

i=1

(
1− i

N

)
.

Since i/N < 1 for all i, we have 1− i
N ≤ e−i/N (by Inequality A.3) and so

Pr[NoCollq] ≤
q−1∏

i=1

e−i/N = e−
∑q−1

i=1 (i/N) = e−q(q−1)/2N .

We conclude that

Pr[Coll] = 1− Pr[NoCollq] ≥ 1− e−q(q−1)/2N ≥ q(q − 1)

4N
,

using Inequality A.4 in the last step (note that q(q − 1)/2N < 1).

A.5 *Finite Fields

We use finite fields only sparingly in the book, but we include a definition
and some basic facts for completeness. Further details can be found in any
textbook on abstract algebra.


