
CS 410/510 Introduction to Quantum Computing

Homework 4
Portland State U, Spring 2017 May 16, 2017
Lecturer: Fang Song Due: May 30, 2017

Instructions. Your solutions will be graded on correctness and clarity. You should only
submit work that you believe to be correct; if you cannot solve a problem completely,
you will get significantly more partial credit if you clearly identify the gap(s) in your
solution. It is good practice to start any long solution with an informal (but accurate)
“proof summary” that describes the main idea. For this problem set, a random subset of
problems will be graded. Problems marked with “[G]” are required for graduate students.
Undergraduate students will get bonus points for solving them. Bonus problems in this
homework have extended due date till June 10.

You may collaborate with others on this problem set. However, you must write up your
own solutions and list your collaborators for each problem.

1. (15 points) (OR gate as a quantum operation) Recall the binary OR operation, denoted
as ∨, defined as a ∨ b = 0 if a = b = 0 and a ∨ b = 1 otherwise. Here we consider
operations that map the two-qubit state |a, b〉 to the one-qubit state |a ∨ b〉, for all
a, b ∈ {0, 1}. Of course, no unitary operation can perform this mapping, since the
input and output dimension do not match; however, general quantum operations can
compute this mapping.

(a) Give a sequence of 2× 4 matrices A1, . . . , Ak with ∑k
j=1 A†

j Aj = I that compute
the OR operation in the sense that, for all a, b ∈ {0, 1}, when ρ = |a, b〉〈a, b|,
∑k

j=1 AjρAj† = |a ∨ b〉〈a ∨ b|.
(b) The operation from part (a) maps all basis states to pure states. Does it map all

pure input states to pure output states? Either prove it, or provide a counterex-
ample.

2. (Entropy) Let H(·) denote the Shannon entropy and S(·) be the von Neumann entropy.
S(A : B) denotes quantum mutual information.

(a) (Exercise) Let X be a random variable taking values in {0, . . . , 2m2} with prob-

ability distribution px =

{
1− 1/m if x = 0

1
m2m2 otherwise . Calculate H(X)? Conclude

that H(X)→ ∞ as m→ ∞, but one sample of X is almost certainly 0.

(b) (5 points) Let ρ = p|0〉〈0|+(1− p)|+〉〈+|. Compute S(ρ). How does it compare
to the entropy of a biased coin X where HEADS appears with probability p?

(c) (10 points) Suppose that px are probabilities, |x〉 are orthogonal states for a
system A, and ρx is any set of density matrices for another system B.

1



i) Show that S (∑x px|x〉〈x| ⊗ ρx) = H(px) + ∑x pxS(ρx) .
ii) Consider ensemble of density matrices E := {px, ρx}. Show that the follow-

ing two definitions of Holevo’s information quantity χ are equivalent.

χ(E) := S(A : B), with ρAB = ∑
x

px|x〉〈x| ⊗ ρx ;

& χ(E) := S(∑
x

pxρx)−∑
x

pxS(ρx) .

Update: S(A : B) = S(ρA) + S(ρB)− S(ρAB) is the quantum mutual information
between system A and B.

3. (Quantum error-correcting)

(a) (15 points) Let E be an arbitrary 1-qubit unitary, and I, X, Y, Z are the four 2× 2
Pauli matrices.

i) Show that it can be written as E = α0 I + α1X + α2Y + α3Z, for some complex
coefficients αi with ∑3

i=0 |αi|2 = 1. (Hint: compute the trace Tr(E†E) in two
ways, and use the fact that Tr(AB) = 0 if A and B are distinct Pauli matricies,
and Tr(AB) = Tr(I) = 2 if A and B are the same Pauli.)

ii) Write the 1-qubit Hadamard transform H as a linear combination of the four
Pauli matrices.

iii) Suppose an H-error happens on the first qubit of α|0̄〉+ β|1̄〉 using the 9-
qubit code. Give the various steps in the error-correction procedure that
corrects this error.
Note: |b̄〉 represents a logical qubit, which is the encoded state of |b〉 under
the considered code.

(b) (10 points) Show that there cannot be a quantum code that encodes one logical
qubit by 2k physical qubits while being able to correct errors on up to k of the
qubits. (Hint: No-cloning theorem)

4. (Learning parities) Let s ∈ {0, 1}n be a secret n-bit string. Suppose f : {0, 1}n → {0, 1}
computes the dot product f (x) = s · x = ∑n

i=1 sixi (mod 2) (i.e., the parity of the bits
in s chosen by the non-zero positions of x). In this problem, we will (mainly) consider
the query complexity of learning s.

(a) (8 points) How many queries are needed to classically learn s with zero-error
(i.e., always outputting the correct answer)? Give an algorithm for this problem,
and show that it is optimal.

(b) (7 points) Explain why even if we allow the classical algorithm to fail with some
fixed probability (e.g., probability 1/3), it requires the same asymptotic query
complexity as the zero-error case.

(c) (10 points) How many queries are needed by a quantum algorithm to learn s
with zero-error? Give an algorithm for this problem, and show that it is optimal.
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As usual, we assume a quantum oracle O f : |x〉|y〉 7→ |x〉|x · s (mod 2)〉 is given.
(Hint: Deutsch-Josza)

(d) (Bonus 10pts) Now consider a noisy version f̃ of f : f̃ (x) = x · s + ex (mod 2)
where ex ∈ {0, 1} is a random bit independently drawn for each x, and bx = 1
with probability η. Given oracle access to f̃ , how many queries are needed by a
quantum algorithm for finding s with probability at least Ω((1− 2η)2)?

(e) (Bonus 15pts) Suppose that we no longer have oracle access to f . Instead we are
given a sequence of classical samples (xi, yi), i = 1, . . . , m, where xi ← {0, 1}n

chosen uniformly at random and yi = s · xi + exi (mod 2) with independent
exi ← COINη. Let m be a polynomial in n. Give a (quantum or classical)
algorithm that runs in time polynomial in n for finding s for constant η (e.g.,
η = 1/4).

5. (Testing entanglement) Suppose that Alice and Bob share a two-qubit state, and they
want to test if it is the EPR pair |φ+〉 := 1√

2
(|00〉+ |11〉) with local measurements and

classical communication. Consider the following procedure: they randomly select a
measurement basis: with probability 1/2, they both measure in the standard basis
{|0〉, |1〉}; and, with probability 1/2, they both measure in the Hadamard (diagonal)
basis {|+〉, |−〉}. Then they perform the measurement and they accept if and only if
their outcomes are the same.

(a) (5 points) Show that the state φ+ is always accepted by this test with zero-error.

(b) (8 points) Show that, for an arbitrary 2-qubit state |µ〉, the probability that it
passes the test is at most

1 + |〈µ|φ+〉|2
2

.

(Hint: decomposing |µ〉 under the four Bell states.)

(c) (7 points) Now consider another (malicious) party Eve, who may have intervened
with the state that Alice shares with Bob. Let ρABE be their joint state. Now
assume that Alice and Bob are certain that they two perfectly share |φ+〉, show
that Alice and Eve’s state cannot be in |φ+〉 as well.
Note: we can actually show that ρABE must be of form |φ+〉〈φ+|AB ⊗ ρE (i.e.,
Eve’s state is uncorrelated with that of Alice and Bob). This is an example of
monogamy of entanglement: the more system A is entangled with B, the less A is
entangled with another system C.

6. (Bonus: Quantum rewinding.) Let Q be a unitary quantum circuit that takes an
m-qubit input state |ψ〉 and ancilla |0k〉, and let the output state be

Q|ψ〉|0k〉 =
√

p(ψ)|0〉|φ0(ψ)〉+
√

1− p(ψ)|φ1(ψ)〉 .

Namely if we measure the first of the m + k output qubits, we see 0 (1 respectively)
with probability p(ψ) (1− p(ψ) resp.) and the state collapses to |0〉|φ0(ψ)〉 (|1〉|φ1(ψ)〉
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resp.) Suppose that we would like to produce |φ0(ψ)〉 from input state |ψ〉. If we
have multiple copies of |ψ〉, we may repeat running Q and hope to measure 0 in one
of the instances. This problem explores when we can do so with just a single copy of
(unknown) |ψ〉. In general, measuring one qubit may already collapse the state, and
it is not clear if it is possible to get |φ0(ψ)〉 if the measurement outcome was 1.

(a) (Do not need to turn it in) Consider a special case that p(ψ) = p is constant over
all choices of the |ψ〉 with p ∈ (0, 1)). Show that for every ε > 0 there is a general
quantum circuit R, with size(R) = O(log(1/ε) · size(Q)) such that the output
ρ(ψ) of R satisfies

〈φ0(ψ)|ρ(ψ)|φ0(ψ)〉 ≥ 1− ε .

(Hint: techniques in Grover’s algorithm.) Note: we may weaken the condition
slightly to almost constant probabilities of measuring 0 and 1 and show a similar
“quantum rewinding” procedure. Read more on https://cs.uwaterloo.ca/

~watrous/Papers/ZeroKnowledgeAgainstQuantum.pdf.

(b) (Bonus 10pts) Under the same condition above, show how to recover |ψ〉 exactly
from |φ1(ψ)〉. (Therefore you may repeat running Q from start again and again
utill you get |φ0(ψ)〉)

(c) (Bonus 15pts) Can you identify other conditions where quantum rewinding is
possible?
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