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This is a survey paper that aims to answer the question of what properties make certain problems a better
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1 INTRODUCTION

When it comes to the subject of Quantum Computers, there are a few main questions that generally
immediately come to the forefront of someone’s mind. The first is “How do they work?” The second
is “What makes them fast?” The third is “How can we take advantage of them?” In attempting to
look up the answers to those questions, one will likely discover a somewhat depressing fact: No
satisfactory answers that are approachable to the layman are readily available. Rather, it is somewhat
of a fact of life that most all currently available explanations of how quantum computers work
which are aimed at laymen are anywhere from moderately wrong to complete and unsubstantiated
nonsense. Commonly, explanations such as “the computer tries all problems in parallel” or “each
qubit doubles the processing power so a 50 qubit machine is as powerful as a 2°° bit computer” are
used. It’s regrettable that this sort of thing has happened as it has prevented a lot of understanding
of quantum computing from reaching a more mainstream audience.

Many physicists and computer scientists will be quick to point out that quantum computing is
not some miracle; quantum computers are very limited, just like classical computers. That being
said, there are a few applications for which quantum computers seem extraordinarily well equipped
to handle compared to their classical counterparts. This paper will attempt to introduce some
motivation for how quantum machinery works in order to give an easily understandable yet
accurate explanation of quantum computers. The paper will then expound on a few very famous
and common examples of quantum algorithms and will provide some high level explanations for
why they are effective. An eventual goal of the paper is to allow a reader to develop an intuition
for how quantum computers work and for what problems a quantum computer is most suited for.
Difficulty lies in the fact that people learn by using preexisting internalized analogies, concepts,
metaphors, etc., to attach new concepts to old ones and thereby internalize new concepts; however,
since quantum computing has its fundamental roots in the generalization of probability theory to
the complex numbers, there aren’t many concepts someone can use to help understand or develop
an intuition for these things. As such, the authors have made the interesting choice to present
some potential “hand-wavy” metaphors and explanations; these are not intended to be perfectly
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accurate, but rather they are intended to not be misleading and are intended to help foster a growing
intuition.

2 INTUITION
2.1 Nature of Speedups

Quantum computers are occasionally far faster than classical computers for certain tasks. This
speedup originates from potentially two sources: Superposition’s ability to exploit highly struc-
tured promises, and a quantum system’s ability to simulate quantum behavior efficiently. With
superposition, one takes advantage of the structure of how a problem is laid out; intuitively, one
sets up the problem in such a way that the wrong answers are most likely to “cancel out” and the
right answers are most likely to remain. Efficient quantum simulation is actually not a magical
property of quantum computers but rather an obvious one. Much like a person has an easier time
speaking in their native language than they do in a foreign language, computers have an easier
time working in their “native” world; since quantum computers are quantum, they can efficiently
simulate quantum phenomena. As these are the two sources of quantum speedup, this paper will
discuss one example from each category in order to offer some basic intuitive understanding of how
each work. First, we will lay down a framework for an intuitive understanding of the underlying
concepts and vocabulary often used when discussing quantum computers. After that, we will
introduce the two motivating algorithm frameworks.

2.2 Concepts of Quantum Computing

Fundamental concepts such as Superposition and Amplitudes can be quite confusing and poorly
explained, yet they are crucial to developing an understanding for why quantum computers work
the way they do. Below, we introduce Amplitudes and Superposition in a way that attempts to
establish an intuition and big-picture idea of the concepts.

2.2.1  Amplitudes. Amplitudes are a result of the generalizing of probability theory to include
complex and negative probabilities. Below, we present an inductive buildup to complex probability
by means of motivating examples.

Before we had the concept of negative numbers, mathematicians worked only with positive
numbers. However, it is interesting to note that even hundreds of years before mathematicians fully
formalized and accepted negative numbers as a legitimate mathematical concept, they were being
used long before that in practice. Negative numbers were used to encode a binary concept into
the number; embedding the concept of debt into the number were commonplace in the business
world. Physics embedded direction into numbers by using negative numbers to mean the opposite
direction.

As people started to model more complex behavior and relationships with numbers, the complex
number became introduced and used. Complex numbers encode a two dimensional concept of
dependency into a number. For instance, a two dimensional direction vector (equivalent to a
compass) can be represented as a single number; angular spin can also be encoded in a complex
number, which gave rise to the relationship between trig functions and Euler’s constant-often used
in Engineering to encode two-dimensional motion into a single number.

2.2.2  Superposition. The authors suggest that a suitable intuition for superposition is the si-
multaneous embodying of two concepts in one compound concept. For example, embedding two
dimensions of direction into a single vector can be thought of as the “superposition” of the cardinal
directions. A complex number representing direction represents simultaneously up/down and
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left/right; if up and down are represented equally in a number, it’s a real number and if left/right
are represented equally, it is purely imaginary.

Somewhat orthogonal to the concept of superposition is the fact that superposition in Quantum
Mechanics can “cancel out” Continuing with the analogy of the two dimensional vector, suppose
you have a vector that’s (0,0) — (0, 1) and one that’s (0,0) — (0,—1), they would cancel each
other out and result in nothing happening.

2.2.3  Amplitudes. We now return to Amplitudes in order to talk about them from a probability
theory perspective; amplitudes are simply probabilities that are allowed to be negative or complex
numbers. Probability theory in general allows us to talk about the likelihood of one event happening.
Examples: 70% chance to rain, %th chance toroll a 1 on a die, ... Classical probability theory always
uses natural numbers; never negative numbers, never complex numbers.

Now, what would a negative probability look like? First, the authors would like to mention that
they are “impossible” much in the same way that it is impossible to have negative four apples;
while such a situation is absurd, the concept can be used to encode a binary condition. We extend
this concept to probability by way of analogy; thus, complementing negative numbers, a negative
probability would encode a binary condition. Examples: the probability that I will pay my debt given
a future condition, the probability of satisfying a constraint given a certain chance of obtaining a
necessary component eventually, traveling in a direction backwards through time.

We now turn to the question of what would complex probabilities look like? Complementing
complex numbers, we suggest an intuition they complex probabilities would encode a two dimen-
sional concept of conditional probability into a single probability. We motivate the understanding
of how this would work with a hypothetical situation of a driver stuck in traffic.

Example The driver can move into one of 2 lanes or stay in their current lane. The driver is
most likely to move into the left lane; if that lane becomes taken, the driver will most likely
stay in their current lane. The driver is least likely to move into the right lane; if that lane
becomes free, the driver will most likely move into the right lane. Otherwise, The driver will
stay in their current lane.

A complex probability would allow someone to have a single probability for existing in a
particular lane, taking into account all the possibilities; due to the property of linearity in quantum
mechanics, it is guaranteed that one can always write all of the probabilities as a single superimposed
probability. We now suggest an intuition to explain how the “canceling out” of complex probabilities
can sometimes occur. In the previous scenario: if the left lane fills up and the right lane doesn’t
become free, the driver will not even consider moving as all probabilities of moving will cancel out.
This canceling will take place without ever actually computing something.

2.3 Query model

We now discuss the Query Model of quantum computers. The query model is how quantum
computation is analyzed and discussed; once it is understood, conceptually, how this model works,
it should be much easier to understand how certain quantum algorithms work. With the query
model, we are given a problem we want to solve and we are given a function; further, promises are
made that this function has certain properties. We suggest the intuition that as a promise becomes
more structured and strict, it omits less possible valid strings; the higher chance a string is invalid,
the more likely it is that invalid strings will cancel each other out. There is more technical detail to
be said about such things, but the goal here remains a high level intuition for a layman.
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3 SPEEDUP AND PROBLEM STRUCTURE

It is important to remember that quantum computers achieve speedup through two possible reasons:
superposition and quantum simulation. With regards to problem structure, if the problem is one of
simulating quantum phenomena-eg, Boson sampling—then speedup is clear and the reason for it is
fairly straightforward. The trickier and less obvious speedups possible come from those which rely
on superposition. Intuitively, speedup that comes from superposition relies on being able to “cancel
out” almost all of the wrong answers; this, intuitively, necessitates a promise that is very strict. As
it turns out, this pattern follows through in all of quantum computing in general. The stronger the
promiise, the larger the speedup. However, only admitting one single answer does not suffice for
having a large speedup; we see this with searching for a specific string. In the case of search, there
is only one possible answer, but the structure of the search-space is completely undefined and thus
we cannot maximize our ability to take advantage of superposition.
Below, we present a “hierarchy” of structure:

No speedup A problem such as finding the most frequently occurring string in a set of strings
is so unstructured that it actually has no quantum speedup over classical computers.

Quadratic Problems that accept only certain input, but impose no structure in the search space
tend to be only quadratic speedup (eg, searching).

Polynomial A problem that accepts only certain input that relies on other input and thus
imposes some sort of structure in the search space can achieve polynomial speedup.

Exponential A problem that accepts only certain input and imposes a strong structure onto
the properties of the search space can achieve exponential speedup.

Beyond Intuitively speaking, it is possible to continue to add on promises and further add
arbitrary structure to a problem in the hopes of achieving higher speedups. Less intuitively, it
turns out that this isn’t possible. It turns out that this gap, O(k) quantum queries to ~N'1~1/(2)
randomized classical queries, is optimal. In other words, there is an upper limit to how much
speedup a quantum computer can achieve over a randomized classical computer.

4 HIDDEN SUBGROUP PROBLEM

We have seen so far how problem structure is incredibly important in quantum computing and
how it plays a central role in determining how fast an algorithm is capable of running. It turns out
that many problems that have quantum solutions which are far faster than classical solutions also
share similar properties in problem structure. These properties were generalized into something
called the Hidden Subgroup Problem (HSP).

A basic explanation of the HSP is that you are trying to find a hidden subgroup of another,
larger, group. The reason this allows for such a large speedup is that these groups have an inherent
structure; for the problems that we know how to solve most efficiently, that structure is called
“abelian” HSP exploits the structured promises given naturally by the relationships groups with
their subgroups.

In the case of abelian groups, there are tons of global properties that are inherent to abelian
structures that complement quantum computers very naturally. This makes them, and structures
like them, a perfect fit for solving problems quickly with quantum computers.

We digress a bit from the informal at this point in order to provide a briefly technical definition
of the HSP. A concise definition of the problem, from Wikipedia, is as follows.

First, a definition of what we mean by “hiding”: Given a group G, a subgroup H < G, and a set X,
we say a function f : G — X hides the subgroup H if Vg1,92 € G, f(g1) = f(92) & ¢:1H = g.H
for the cosets of H.
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Now we give the formal definition of the Hidden subgroup problem: Let G be a group, X a finite
set, and f : G — X a function that hides a subgroup H < G. The function f is given via an oracle,
which uses O(log |G| + log | X]) bits. Using information gained from evaluations of f via its oracle,
determine a generating set for H.

4.1 Properties Abelian HSP exploits.

As for the HSP itself, it takes advantage of a quantum computer’s ability to quickly check global
properties of things by querying in terms of global properties as much as possible. As we see from
the formal definition given above, the function that we query is required to be constant on the
cosets of the hidden subgroup and different for each coset.

In addition to that, abelian groups share several guaranteed properties because of their structure:

e Any two elements commute.

o Its center is the whole group.

o Deriving subgroups is trivial.

o All finite abelian groups are generated from a direct product of cyclic groups.

e The above structure rule can be used to generate the complete list of finite abelian groups.
e Periodicity and cyclic nature of abelian groups can also be easily exploited.

e Several symmetric properties exist that can be exploited as well.

4.2 What we can do with HSP

Almost every single problem in the complexity class BQP can be reduced to a special case of the
HSP framework. This allows for the solving of: factoring, discrete logarithms, PellAAZs equation,
SimonaAZs problem, and more. The HSP is an incredibly general framework that allows for solving
a very wide variety of problems. Nevertheless, the question remains: Can we generalize this to
nonabelian groups?

4.3 Generalization attempt

We know that we can build an HSP for any group out of HSPs for simple groups. Further, we know
how any simple group can be built and there are only a limited amount of them. This suggests that
we should be able to build a general HSP construction that will work for any problem that can
be phrased as a HSP, regardless of the type of group used. Unfortunately, currently we have been
unable to construct these due to an inability to fully take advantage of the structures that exist only
in simple groups; as of now, they simply don’t offer enough constraints for us to take advantage of.

4.4 Intuition: What kind of problems would make sense to tackle with HSP?

So far we have seen that problems that can be reduced to the HSP can hopefully be solved efficiently.
Currently, we only have efficient solutions for abelian subgroups; due to the nature of their structure
and how they can be exploited, they are an excellent natural fit for quantum computing. This
suggests that any problem which doesn’t care what order your input and output is, which has
several symmetric and global properties (eg determining if a function is constant), and so on, would
be a good fit for quantum computers. Keeping this in mind, let us ask ourselves about the Traveling
Salesman Problem: Is this a good fit for quantum computers?

In the TSP, there’s only one shortest path; thus, we only have one correct answer. It’s not quite a
global property, but a promise of a singular solution is still sufficient for some speedup. Also, in the
TSP, the path a to b to c is equivalent to the path c to b to a; there’s a limited form of commutation
here. It’s not fully commutative as a to ¢ to b is not equivalent, but there looks to be enough
symmetry and structure to offer some speedup. Thus, it seems quite reasonable to expect some



1:6 Jared Weakly and Nhut Le

sort of speedup-likely quadratic-over classical computers; an exponential speedup would require
rephrasing the problem in a unique way, much like Shor’s factoring algorithm rephrased factoring
as global properties of co-primes.

5 BOSON SAMPLING

Quantum computers promise an exponential speed-up over classical. However, the construction
of a universal quantum computer which could implement any quantum algorithms or quantum
simulation is getting much challenging. Nevertheless, an intermediate computer between quan-
tum computer and classical computer or single purpose machines capable of solving particular
problems, may become possible on a shorter timescale. For example, the problem of building a
quantum emulator - a well controlled quantum system whose dynamics approximate those of a
classically intractable physical quantum system of interest - may be solvable in the medium term.
Another example is Boson Sampling. Linear optics quantum computer is a leading candidate for the
implementation of quantum computer. Universal quantum operators can be implemented by using
linear optics, photon production and counting, quantum memory and fast feed forward. Boson
Sampling, which was proposed several years ago, is a scheme for using linear-optical networks
to solve sampling problems that appear to be intractable for a classical computer. It is strongly
believed to solve problems that are classically hard.

5.1 Boson Sampling Problem

A linear optical quantum process, consisting of input of photons in a Fock state, unitary evolution
implemented only via beam splitters and phase shifters and simultaneous photon-counting mea-
surement of all modes, cannot be efficiently simulated classically up to some reasonable complexity
assumptions. The large probability distribution that is sampled when photons are detected after
a random transformation exponentially becomes more difficult using a classical computer as the
number of input photons and the number of input and output ports increases. That difficulty is due
to the unusual behaviour of photons. When two photons reach a beam splitter at exactly the same
time, they will always follow the same path afterwards - both going either left or right - and it is
that behaviour that is so hard to model classically. Those problem called boson sampling problems
are related to the #P complexity class that is hard to solve in classical computers. Therefore, Boson
Sampling device is introduced to sample that phenomenon.

5.2 Boson Sampling

Boson Sampling is a device having a set of photons arriving at a number of parallel input ports. The
set of photons will go through a unitary evolution implemented only via beam splitters. Then, the
output is a second set leaving via a number of parallel outputs. The illustration of Boson sampling
device is shown in Fig. 1.

5.3 Boson Sampling Formalism

Suppose we start with m modes. Some configurations of n < m modes are initialized with single
photons |1) and the (m — n) remaining modes are in vacuum state |0). Therefore, the initial state is:

iy = 111+ 2 Ins Opers e O) = ) -+ (00, <+, On)
where &IT is the photon creation operator in the ith mode and N = O(n?).

The input state then passes through a unitary evolution U implemented only via beam splitters
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Fig. 1. The boson-sampling model

and phase shifters. The map would be:
m
At ot
0a[0" = > Uy d]
j=1
where U is a unitary matrix characterizing the linear optics network.

Or briefly, it could be: d: - 2, Ui j&;. Additionally, an arbitrary U can always be decomposed
into a polynomial number of optical elements. Thus, any U of this form can always be efficiently
experimentally constructed.

At the end, the output state would be:

S S
Wour) = Y ysIns™, -+, n)
S

where S is a configuration,

n®) is the number of photons in the ith mode associated with configuration S,
Ys is the amplitude associated with configuration S,

and m outputs.

Furthermore, The probability of measuring configuration S is given by Ps = |ys|%. By detect-
ing the number of output photons, the Boson distribution for some particular input configuration
and unitary scatterer U can be sampled. In addition, if U is picked randomly, it’s hard for classical
computer to simulate the simulating of the distribution.

It is shown that the amplitudes ys are related to matrix permanents:
Per(Us)

V(S

Us: an n X n sub-matrix of U.

Per(Us): the permanent of Us.

We will go through two examples below to understand more closely the relationship between ys
and matrix permanents.
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S
ng\ng ),...,ng;f))
S

Ps = |ys|?

Fig. 2. The boson-sampling model. The input has m modes filled by n single photons and (m — n) remaining
modes are in vacuum state. After the linear optics network, U , we measure some configuration of photons S.

The probability of measuring configuration S is Ps = |ys|?.

5.3.1 Two single photons at input. Let consider there are 2 single photons at the inputs and we
will calculate the amplitude of measuring one photon at output 2 and another one at output 3.
There are 2! = 2 ways for photons to get the outputs. This is shown in Fig. 3. Thus, the amplitude

@O @O

@O

Fig. 3. Two-photon boson-sampling. In measuring the amplitude of measuring a photon at each of the output
modes 2 and 3, there are two ways: either the photons pass straight through, or swap, yielding a sum of two

paths.

could be written as:

Ul 2 UZ 2
vo3 =  UpelUis  + Uizl =Per( U U
N ” N _ 1,3 1,3
walker don’t swap ~ walkers swap

which is a 2 X 2 matrix permanent.

5.3.2 Three single photons at inputs. If there are 3 single photons at the inputs, there are 3! = 6
ways for photons to reach the outputs 1,2 and 3 which is shown in Fig. 4. Then, the amplitude is
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Fig. 4. Two-photon boson-sampling. In measuring the amplitude of measuring a photon at each of the output
modes 2 and 3, there are two ways: either the photons pass straight through, or swap, yielding a sum of two
paths.

calculated as:
Y123 = U 1Us2Us 3 + Uy 1Us 2Us 3
+U2,1Uy,2Us,3 + Uz 1Us 2 Uy 3
+Us,1U1,2Us,3 + Us 1Uz 2Us 3

Ui U1 Usi
= Per Ul,z Uz,z Ug’z
Uys Uz Usgs
which is a 3 X 3 matrix permanent.

In general, if there are n single photons at the inputs, there are n! ways for photons to reach
the outputs. Thus, the amplitude is related to n X n matrix permanent. Calculating n X n matrix
permanent is #P-complete, which is even harder than NP-complete. There is an algorithm calculat-
ing n X n matrix permanent with O(2"n?) runtime. Thus, if boson sampling is able to be simulated
classically by calculating matrix permanent, it will requires exponential resource.

Since there are n single photons which are divided into m inputs, the number of configurations S is:

n+m-1
si=( ")

which is super exponential is n. Thus, with ’efficient’ n of trials, we cannot to sample a given
configuration more than once. It makes us not to calculate any Ps with more than binary accuracy.
Thus, boson-sampling does not let us calculate matrix permanents, or it would require an exponential
number of measurements to determine matrix permanent with high accuracy.

6 FURTHER DISCUSSIONS FOR THE TOPIC.

While this paper has attempted to provide an approachable, yet accurate, intuition and understand-
ing behind how quantum computers work and what problems quantum computers excel at, it
recognizes that there is still much work to be done in this area. Further areas of research could
include: interactive educational media; expanding on more types of algorithms, we only discusses
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the HSP and Boson Sampling and there are a few other very interesting areas of algorithms that can
provide further illumination into how quantum computers work; more comprehensive motivating
examples; and more accurate—yet no less understandable-intuitive concepts.

A small meta note about definitions: This paper is being presented inside a 400/500 level quantum
computing course; as such, in the interest of saving space, an introductory section going over
basic definitions has been omitted. Were this to be submitted as a potential learning resource
for a layperson, introductory materials for basic concepts (eg superposition, promises, structure)
would be included; these introductory materials would include the definition, some motivating
examples, intuition building, and more as needed. That being said, wherever convenient, an attempt
at introductory and motivating context has been provided as a potential example for future work.

7 CONCLUSION

The HSP is an incredibly general framework that is one of the prime examples of being able to exploit
superposition in quantum mechanics in order to achieve dramatic speedups in quantum algorithms.
The other way that one might achieve dramatic speedups is through the fact that quantum computes,
being natively quantum in behavior, can efficiently simulate quantum phenomena; this is the main
source from which Boson Sampling draws its computational speedup from.

Boson sampling is a so-called sampling problem whereby the goal is sample a statistical distribu-
tion using finite number of measurements. Thus, finding a computational application is further
complicated. There is non-existing application for Boson sampling. Boson sampling is just an inter-
esting proof-of-principle demonstration that can be an example of passive linear optics’ outperform
over classical computers. Finally, it does not solve a problem of practical interest.
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