CS 410/510 Introduction to Quantum Computing Lecture 5

Portland State U, Spring 2017 Lecturer: Fang Song *April 18, 2017 Scribe: Nate Launchbury*

Version: May 31, 2017

1 Simon's Problem

Input: $f : \{0,1\}^n \to \{0,1\}^n$ as an oracle circuit,

$$\begin{array}{c|c} |x\rangle & & \\ \hline \\ |y\rangle & & \\ \hline \\ \\ |f(x) \oplus y\rangle \end{array}$$

Promise: $\exists s \in \{0,1\}^n$ such that $\forall x, y \in \{0,1\}^n$, f(x) = f(y) iff $x \oplus y = s$

Goal: Find *s* (using as few oracles queries as possible).

Notice that the promise in Simon's problem says that there is some shift, *s*, so that the function *f* returns the same value only on inputs *x* and $x \oplus s$, for all inputs *x*. So, intuitively, if we ever observe two inputs that map to the same output value, we can recover *s*, which is our goal. This gives rise to our classical algorithms for solving Simon's problem.

Deterministic algorithm (idea): query \mathcal{O}_f until you observe two distinct inputs with the same output value. Since *f* maps to $2^n/2$ unique outputs, the pigeon-hole principle tell us that we will need $2^n/2 + 1$ oracle queries in the worst case.

Randomized algorithm:

- 1. pick $x_1, ..., x_k \in \{0, 1\}^n$ at random
- 2. compute $y_1 = f(x_1), ..., y_k = f(x_k)$
- 3. check if $\exists x_i, x_j$ such that $y_i = y_j$ (call this event *E*) and return $x_i \oplus x_j$ if so

How large must *k* be so that $Pr[E] \ge 0.99$? We find a collision with probability $k^2/2^n$ (by Birthday bound) so we need $k \approx \sqrt{2^n}$ oracle queries to have a high chance of finding *s*.

Quantum algorithm:

Repeat the following quantum circuit, Q, m times,

Post-processing on $z_1, z_2, ..., z_m$ gives *s* (each z_j is the string made by the first *n* output bits of the *j*-th repetition of the above circuit).

Results:

Deterministic	Randomized	Quantum
$2^n/2 + 1$	$\Omega(2^n/2)$	$O(n^2)$

This is the first quantum algorithm we've seen to give exponential speedup!

1.1 Analysis of quantum circuit Q

$$\begin{split} |0^{n}\rangle \otimes |0^{n}\rangle \xrightarrow{H^{\otimes n} \otimes I} \frac{1}{\sqrt{2^{n}}} \sum_{x \in \{0,1\}^{n}} |x\rangle \otimes |0^{n}\rangle \\ \xrightarrow{\mathcal{O}_{f}} \xrightarrow{1} \sqrt{2^{n}} \sum_{x \in \{0,1\}^{n}} |x\rangle \otimes |f(x) \oplus 0^{n}\rangle \\ &= \frac{1}{\sqrt{2^{n}}} \sum_{x \in \{0,1\}^{n}} (\frac{1}{\sqrt{2^{n}}} \sum_{y \in \{0,1\}^{n}} (-1)^{x \cdot y} |y\rangle) \otimes |f(x)\rangle \quad \text{by previous lemma} \\ &= \sum_{y \in \{0,1\}^{n}} (\sum_{x \in \{0,1\}^{n}} \frac{1}{2^{n}} (-1)^{x \cdot y} |f(x)\rangle) \otimes |y\rangle \\ &= |\psi_{y}\rangle \otimes |y\rangle \qquad \text{where } |\psi_{y}\rangle = \sum_{x \in \{0,1\}^{n}} \frac{1}{2^{n}} (-1)^{x \cdot y} |f(x)\rangle \\ \xrightarrow{\text{measure}} ? \end{split}$$

We consider the possibilities after measuring $|\psi_y\rangle$. Let $|\psi\rangle = \sum_{y \in \{0,1\}^n} |\psi_y\rangle \otimes |y\rangle$ Define A = range(f), then $|A| = 2^{n-1}$ Notice if f(x) = z, there are two possible *xs*: x_z and $x_{z \oplus s}$ So

$$\sum_{x} (-1)^{x \cdot y} |f(x)\rangle = \sum_{z \in A} ((-1)^{x_z \cdot y} + (-1)^{x_{z \oplus s} \cdot y}) |z\rangle$$
$$= \sum_{z \in A} (-1)^{x_z \cdot y} (1 + (-1)^{y \cdot s}) |z\rangle$$

Observation:

- if $y \cdot s = 1$, then $1 + (-1)^{y \cdot s} = 0$
- if $y \cdot s = 0$, then $1 + (-1)^{y \cdot s} = 2 \neq 0$

• in addition, there are 2^{n-1} strings *y* such that $y \cdot s = 0$. Therefore,

$$Pr[\text{measure } y] = \begin{cases} 0 & \text{if } y \cdot s = 1\\ \frac{1}{2^{n-1}} & \text{if } y \cdot s = 0 \end{cases}$$

1.2 Geometric interpretation

View $\{0,1\}^n$ as a vector space and pick *m* vectors on a hyperplane orthogonal to *s* We end up with:

$$z_1 \cdot s = 0$$
$$z_2 \cdot s = 0$$
$$\dots$$
$$z_m \cdot s = 0$$

since every z_i is orthogonal to s. We need n linearly independent equations to uniquely determine s in this way. To get n with high probability we need $m = O(n^2)$. We can then solve for s classically using Coppersmith-Winogard in $O(n^{2.376})$

2 Phase Estimation

Consider the following quantum circuit, Q:

where Q implements a unitary transformation $U_{N \times N}$ for $N = 2^n$ and has eigenvectors, $\{|\psi_1\rangle, |\psi_2\rangle, ..., |\psi_N\rangle\}$. Since $|\psi_i\rangle$ are eigenvectors,

$$U |\psi_j\rangle = e^{2\pi i \theta_j} |\psi_j\rangle$$
 and also $\langle \psi_j |\psi_k\rangle = \begin{cases} 1 & \text{if } j = k \\ 0 & \text{otherwise} \end{cases}$

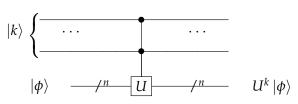
This means that the set of eigenvectors is orthonormal.

Input:

- 1. Q, a quantum circuit for U
- 2. $|\psi\rangle$, an eigenvector of *U* (so $U |\psi\rangle = e^{2\pi i\theta} |\psi\rangle$).

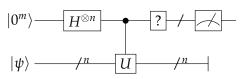
Goal: Compute θ approximately.

Notation: $\Lambda_m(U) \ket{k} \ket{\phi} = \ket{k} U^k \ket{\phi}$ is a *controlled unitary* with $k \in \{0, ..., 2^{m-1}\}$:



Fact: if $k = O(\log n)$ then we can implement $\Lambda_m(U)$ efficiently.

2.1 Algorithm



Let's track how the state changes to figure out the ? gate.

$$\begin{aligned} |0^{m}\rangle \otimes |\psi\rangle \xrightarrow{H^{\otimes n} \otimes I} \frac{1}{\sqrt{2^{m}}} \sum_{x \in \{0,1\}^{m}} |x\rangle \otimes |\psi\rangle \\ \xrightarrow{C-U} \xrightarrow{\frac{1}{\sqrt{2^{m}}}} \sum_{x \in \{0,1\}^{m}} |x\rangle \otimes U^{x} |\psi\rangle \\ = \frac{1}{\sqrt{2^{m}}} \sum_{x \in \{0,1\}^{m}} e^{2\pi i \theta x} |x\rangle \otimes |\psi\rangle \qquad \text{since } U^{x} |\psi\rangle = e^{2\pi i \theta x} |\psi\rangle \end{aligned}$$

So right before we apply the ? gate, we have information about θ . We just need to think of a way to extract that information so that we can recover θ after measuring (approximately and with high probability).

2.2 Special case

Consider the case where $\theta = j/2^m$, $j \in \mathbb{Z}$. Then,

$$\sum_{x \in \{0,1\}^m} e^{2\pi i \theta x} \left| x \right\rangle = \sum_{x \in \{0,1\}^m} e^{2\pi i (j/2^m) x} \left| x \right\rangle = \sum_{x \in \{0,1\}^m} \omega^{xj} \left| x \right\rangle \qquad \text{where } \omega = e^{2\pi i / 2^m}$$

Define:

$$\ket{\phi_j} := rac{1}{\sqrt{2^m}} \sum_{x \in \{0,1\}^m} \omega^{xj} \ket{x}$$
 , $j \in \{0,...,2^{m-1}\}$

Notice, $\{ |\phi_j\rangle : j \in \{0, ..., 2^{m-1}\} \}$ has the property that $\langle \phi_j | \phi_{j'} \rangle = \begin{cases} 1 & \text{if } j = j' \\ 0 & \text{otherwise} \end{cases}$

Then these form a basis for *m*-qubit states $(\mathbb{C}^2)^{\otimes m}$. Of course, we also have the normal basis: $\{ |j\rangle : j \in \{0,1\}^m \}$.

Do we have a transformation *F* such that, $F |\phi_j\rangle = |j\rangle$? If we did, we could use *F* for the ? gate and then our measurement would give us $j = \theta \cdot 2^m$ and we could easily recover θ . Figuring out *F* and how to generalize this special case will give us a phase-estimation algorithm.