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1 Simon’s Problem

Input: f : {0, 1}n → {0, 1}n as an oracle circuit,

|x〉
O f

|x〉

|y〉 | f (x)⊕ y〉

Promise: ∃s ∈ {0, 1}n such that ∀x, y ∈ {0, 1}n, f (x) = f (y) iff x⊕ y = s

Goal: Find s (using as few oracles queries as possible).

Notice that the promise in Simon’s problem says that there is some shift, s, so that the function
f returns the same value only on inputs x and x⊕ s, for all inputs x. So, intuitively, if we ever
observe two inputs that map to the same output value, we can recover s, which is our goal. This
gives rise to our classical algorithms for solving Simon’s problem.

Deterministic algorithm (idea): query O f until you observe two distinct inputs with the same
output value. Since f maps to 2n/2 unique outputs, the pigeon-hole principle tell us that we will
need 2n/2 + 1 oracle queries in the worst case.

Randomized algorithm:
1. pick x1, ..., xk ∈ {0, 1}n at random

2. compute y1 = f (x1), ..., yk = f (xk)

3. check if ∃xi, xj such that yi = yj (call this event E) and return xi ⊕ xj if so
How large must k be so that Pr[E] ≥ 0.99? We find a collision with probability k2/2n (by Birthday
bound) so we need k ≈

√
2n oracle queries to have a high chance of finding s.

Quantum algorithm:

Repeat the following quantum circuit, Q, m times,

|0n〉 /n H⊗n /n

O f
/n H⊗n /n /n b1b2...bn = zj bi ∈ {0, 1}

|0n〉 /n /n |
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Post-processing on z1, z2, ..., zm gives s (each zj is the string made by the first n output bits of the
j-th repetition of the above circuit).

Results:

Deterministic Randomized Quantum
2n/2 + 1 Ω(2n/2) O(n2)

This is the first quantum algorithm we’ve seen to give exponential speedup!

1.1 Analysis of quantum circuit Q

|0n〉 ⊗ |0n〉 H⊗n ⊗ I−−−−→ 1√
2n ∑

x∈{0,1}n

|x〉 ⊗ |0n〉

O f−−−−→ 1√
2n ∑

x∈{0,1}n

|x〉 ⊗ | f (x)⊕ 0n〉

=
1√
2n ∑

x∈{0,1}n

(
1√
2n ∑

y∈{0,1}n

(−1)x·y |y〉 )⊗ | f (x)〉 by previous lemma

= ∑
y∈{0,1}n

( ∑
x∈{0,1}n

1
2n (−1)x·y | f (x)〉 )⊗ |y〉

=
∣∣ψy
〉
⊗ |y〉 where

∣∣ψy
〉

= ∑
x∈{0,1}n

1
2n (−1)x·y | f (x)〉

measure−−−−→ ?

We consider the possibilities after measuring
∣∣ψy
〉
.

Let |ψ〉 = ∑y∈{0,1}n

∣∣ψy
〉
⊗ |y〉

Define A = range( f ), then |A| = 2n−1

Notice if f (x) = z, there are two possible xs: xz and xz⊕s
So

∑
x
(−1)x·y | f (x)〉 = ∑

z∈A
((−1)xz·y + (−1)xz⊕s·y) |z〉

= ∑
z∈A

(−1)xz·y(1 + (−1)y·s) |z〉

Observation:
• if y · s = 1, then 1 + (−1)y·s = 0

• if y · s = 0, then 1 + (−1)y·s = 2 6= 0

• in addition, there are 2n−1 strings y such that y · s = 0.
Therefore,

Pr[measure y] =

{
0 if y · s = 1

1
2n−1 if y · s = 0
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1.2 Geometric interpretation

View {0, 1}n as a vector space and pick m vectors on a hyperplane orthogonal to s We end up
with:

z1 · s = 0
z2 · s = 0

...
zm · s = 0

since every zi is orthogonal to s. We need n linearly independent equations to uniquely determine
s in this way. To get n with high probability we need m = O(n2). We can then solve for s classically
using Coppersmith-Winogard in O(n2.376)

2 Phase Estimation

Consider the following quantum circuit, Q:

/n Q /n

where Q implements a unitary transformation UN×N for N = 2n and has eigenvectors, {|ψ1〉 , |ψ2〉 , ..., |ψN〉}.
Since

∣∣ψj
〉

are eigenvectors,

U
∣∣ψj
〉
= e2πiθj

∣∣ψj
〉

and also
〈
ψj
∣∣ψk
〉
=

{
1 if j = k
0 otherwise

This means that the set of eigenvectors is orthonormal.

Input:
1. Q, a quantum circuit for U

2. |ψ〉, an eigenvector of U (so U |ψ〉 = e2πiθ |ψ〉).

Goal: Compute θ approximately.

Notation: Λm(U) |k〉 |φ〉 = |k〉Uk |φ〉 is a controlled unitary with k ∈ {0, ..., 2m−1}:

· · ·
•

· · ·
•

|k〉
|φ〉 /n U /n Uk |φ〉

Fact: if k = O(log n) then we can implement Λm(U) efficiently.
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2.1 Algorithm

|0m〉 H⊗n • ? /

|ψ〉 /n U /n |

Let’s track how the state changes to figure out the ? gate.

|0m〉 ⊗ |ψ〉 H⊗n ⊗ I−−−−→ 1√
2m ∑

x∈{0,1}m

|x〉 ⊗ |ψ〉

C−U−−−−→ 1√
2m ∑

x∈{0,1}m

|x〉 ⊗Ux |ψ〉

=
1√
2m ∑

x∈{0,1}m

e2πiθx |x〉 ⊗ |ψ〉 since Ux |ψ〉 = e2πiθx |ψ〉

So right before we apply the ? gate, we have information about θ. We just need to think of a way
to extract that information so that we can recover θ after measuring (approximately and with high
probability).

2.2 Special case

Consider the case where θ = j/2m, j ∈ Z. Then,

∑
x∈{0,1}m

e2πiθx |x〉 = ∑
x∈{0,1}m

e2πi(j/2m)x |x〉 = ∑
x∈{0,1}m

ωxj |x〉 where ω = e2πi/2m

Define: ∣∣φj
〉

:=
1√
2m ∑

x∈{0,1}m

ωxj |x〉 , j ∈ {0, ..., 2m−1}

Notice, {
∣∣φj
〉

: j ∈ {0, ..., 2m−1} } has the property that
〈
φj
∣∣φj′
〉
=

{
1 if j = j′

0 otherwise
Then these form a basis for m-qubit states (C2)⊗m.
Of course, we also have the normal basis: { |j〉 : j ∈ {0, 1}m }.

Do we have a transformation F such that, F
∣∣φj
〉
= |j〉 ? If we did, we could use F for the ?

gate and then our measurement would give us j = θ · 2m and we could easily recover θ. Figuring
out F and how to generalize this special case will give us a phase-estimation algorithm.
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