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1 Measurement

What is it doing?

Measurement in the standard, or “computational” basis:

|Φ〉 = α|0〉+ β|1〉 =
(

α
β

)
∈ C2 where |α|2 + |β|2 = 1

• α and β are “amplitudes”.

• Projects
(

α
β

)
onto one of

(
0
1

)
or
(

1
0

)
.

• Probability is magnitude: |α|2 or |β|2.

We can also measure in other orthonormal bases, e.g., the diagonal basis:

{|+〉, |−〉} =
{

1√
2

(
1
1

)
,

1√
2

(
1
−1

)}

2 A General Quantum Circuit

|Φ〉 /
U f

/

|0 . . . 0〉 / / |
• |Φ〉 is an n-qubit register.

• The lower register are poly(n) scrap—or “ancillary”—qubits.

• We measure m qubits at the end and discard the rest.

Note that we only measure at the end. Is this too restrictive? No

Principle of Deferred Measurement:

Theorem 1. Informally: A quantum circuit with intermediate measurement can be simulated by a quantum
circuit thet only measures at the end with linear overhead.
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How? For any intermediate measurement on register A, replace it by introducing an ancillary
register B and apply CNOT gate with A being the control and B as the target. A goes through
whatever operation that comes next and B is left untouched till the endo of computation at which
point it gets measured (i.e. discarded). The actual output registers will have the same distribution
as the original circuit. Clearly the overhead of the transformation is only linear in the size of the
original circuit.

3 Reversible Computation

Is a quantum circuit at least as powerful as a classical circuit? Yes.
• Since quantum gates are unitary matrices, they are reversible (bijective).

• Classical gates like ∧ are not reversible.

• We can simulate classical gates reversibly with extra bits and Toffoli gate:

∧ ≡ a • a
b • b
0 a ∧ b

∨ ≡ a ¬ • a

b ¬ • b

0 ¬ a ∨ b

FANOUT ≡ a • a

0 ¬ • |

0 a

Theorem 2. Informally: A classical circuit C f implementing an arbitrary function f : {0, 1}n → {0, 1}m

using ∧ , ∨ , and ¬ can be simulated by a reversible circuit RC f using poly(n) ¬ and Toffoli gates.
Such a reversible circuit will have an additional ` = poly(n) junk input bits and an additional n + `−m
output junk bits.

We can clean up the junk bits from Theorem 2. Given RC f , we construct RC−1
f by flipping the

order of application. Then we construct U f : (x, 0m) 7→ (x, f (x)) by composing the two:

x ∈ {0, 1}n /
RC f

/ • f (x) /
RC−1

f

/ x

0` / / / / 0`

0m / / f (x)
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4 The Power of Quantum Circuits

U f can be implemented as a quantum circuit, since it is unitary. And since the above construction
is polynomial in time and space complexity,

P ⊆ BQP

And since a quantum circuit has randomness (via applying H and measuring),

BPP ⊆ BQP

Can quantum algorithms do better than their classical counterparts? Consider the following toy
example:

|0〉 H
|+〉

H 0 (1)

|0〉 H H φ (2)

φ =

{
0 w.p. 1

2

1 w.p. 1
2

In (1), defering measurement allow amplitudes to interfere, eliminating the possibility of evaluating
to 1, whereas in (2), measuring after each gate limits us to classical probabilities.

Quantum speedup uses interference to
• reinforce the amplitudes of outcomes we want, and

• cancel out the amplitudes of “undesired” outcomes.

5 Query Model

Given:
• An oracle O f : (|x〉 ⊗ |y〉) 7→ (|x〉 ⊗ | f (x)⊕ y〉) for the function f (·).
• O f is a quantum circuit that can be queried in superposition.

Goal:
• Compute some information about f (·) by querying O f .

• Complexity calculated in number of queries.

• Ideally pre-/post-processing is also time-efficient (polynomial), but that’s not the emphasis.

Why do we study this model?
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• Simple and easy to analyze.

• Captures the essence of QC and provides insight.

• Despite its generality, captures concrete problems, such as factoring.

6 Deutsch’s Problem and Algorithm

Given:
• A function f : {0, 1} → {0, 1}.
• Classically, 2 queries are necessary and sufficient.

Goal: Decide whether f (·) is constant ( f (0) = f (1)) or balanced ( f (0) 6= f (1)).

Classical algorithms: no matter deterministic or randomized, it is easy to verify that 2 queries are
both sufficient and necessary to solve this problems. However, there is a quantum algorithm that
needs only 1 query.

Quantum Algorithm:
|0〉 H

O f

H z ∈ {0, 1}

|1〉 H |

• f (·) is balanced iff z = 1.

• 1 query is sufficient.
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