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Review. Signature without trapdoors.
Today. We’ll introduce trapdoor functions(TDF) and realizations from post-quantum assumptions. Us-
ing TDFs we will see another generic construction for signature schemes. We will then use TDFs to
construct public-key encryption schemes.

1 Trapdoor functions

We’ve played with functions that are assumed to hard to invert. In many cryptographic applications, it
will be extremely useful to have some side information, usually kept secret and called a “trapdoor”, with
which one can invert the function efficiently. We call such functions trapdoor (one-way) functions, de-
noted ( f , ( f −1, td)) where td represents the trapdoor and f −1(td , ·) is an efficient inverting algorithm. We
often just write f −1 and view td as implicit. (Formally speaking, we should define family of functions.)

Notice that for the functions induced from the coding problems and MQ problems already possess
trapdoors due to the specific way we constructed them. For instance recall the syndrome decoding prob-
lem we set H := H0P where

• H0 ∈ F(n−k)×n
2 : a parity check matrix for a linear code with an efficient docoding algorithm D0.

Namely given a syndrome vector s ∈ Fn−k
2 , D0 finds an error vector e ← D0(y) with weight ‖e‖ =β.

• P ∈R Sn : a random permutation matrix.

Let gH : x 7→ H x and td := (D0,P ). Then with td it is easy to invert gH .

1.1 Lattice trapdoors

Embedding trapdoors in lattice problems needs more work1. Roughly speaking there are two types of
lattice trapdoors:

I “Short-basis” trapdoors: introduced and developed in [GGH97,GPV08,CHKP12]. A very natural &
generic technique.

II “Gadget-matrix” trapdoors: introduced by [MP12]. They are specific to SIS/LWE (& their Ring-
analogues) but usually lead to more efficient computations than type-I.

We’ll introduce the type-I trapdoor here in an algebraic way. A more intuitive (geometric) interpreta-
tion, which explains the name “short-basis”, will be discussed next time.

Basically the trapdoor is a set of independent solutions {si ∈Zm
q } for the (homogeneous)SIS problem:

Ax = 0 (mod q).

1This extra complication should not be viewed as a drawback of lattice-based cryptography. Instead of starting from an
easy instance and applying some “ad-hoc” randomization procedure trying to “obfuscate” the easy instance (though some
early work did so e.g., [GGH97]), (modern) functions based on lattices (e.g. SIS & LWE) are generated according to cerntain
distributions so that inverting these functions can be shown to be as hard as solving some lattice problems in the worst-case.

1



Definition 1 (Type-I lattice trapdoor). For a matrix A ∈Zn×m
q , S ∈Zm×m

q is a trapdoor for A if

1. AS = 0 (mod q)

2. S is full rank over Z.

3. ‖S‖ small, i.e., each collumn si ∈Zm
q is “short”.

Observe that with S, one can solve (in addition to solve homogeneous SIS trivially):

• (inhomogeous) SIS: Given f A(x) = Ax (mod q) = y , there are efficient procedures to find a x ′ with
small norm ‖x ′‖ ≤β such that f A(x ′) = y (mod q) (essentially a Bounded Distance Decoding prob-
lem as we will see next time). Actually Gentry et al. [GPV08] showed a way to sample a solution
according to some canonical distribution, which give what they termed preimage-samplable func-
tions. This will be very useful to construct signature schemes (Sect. 2.2).

• LWE: Given g AT (s,e) = AT s + e (mod q) = b, we have z := ST b (mod q) = (AS)T · s + ST e = ST e
(mod q). However since ‖S‖ and ‖e‖ are both small, z = ST e holds over the integers. Hence we
can compute e = (ST )−1z over Z and recover s afterwards. This is essentially the injective trapdoor
function in [GPV08], which uses LWE to instantiate an early idea in [GGH97].

But how do we generate a trapdoor S? Note that it is not feasible if we sample A uniformly at random
and they try to find S. [Why?] Instead, we would generate A and S at the same time, and make sure that
A is statistically close to uniform.

Theorem 1 (Generating lattice problems with trapdoor [Ajt99, AP11, MP12]). There is an efficient ran-
domized algorithm that, given positive integers n, q,m ≥ cn log q, generates an (almost) uniformly ran-
dom A ∈Zn×m

q and a full-rank S ∈Zm×m
q with AS = 0 mod q & ‖S‖ =O(poly(n, log q)).

2 Signing with trapdoors

Now that we have trapdoor (one-way) functions available, a natural idea to construct a signature scheme
is to use the trapdoor as a secret key so we can sign and verify as:

σ= S(sk,m) = f −1(td ,m); V (m,σ) : f (m)
?=σ .

In some textbook, this idea is implemented by the RSA function f (x) := xe (mod N ), f −1(y) := yd

(mod N ) where d is the trapdoor. But unfortunately this is not a wise way. Some early lattice based
signatures essentially followed this approach [GGH97,HPS01,HHGP+03], which were later broken [GS02,
NR09, DN12]. Many code-based and MQ-based schemes also fall into this category.

2.1 Full-Domain Hash

A nuatural idea (which is also a common practice) is to hash a message before signing (e.g., using the
“text-book” RSA approach). This indeed gives a secure scheme in the random-oracle (RO) model using a
trapdoor (one-way) permuation. This is formalized as Full-Domain Hash [BR93, BR96].
Note on Random-Oracle model. Recall that the RO model assumes a hash function O that is

1. Publicly available as a black-box: anyone, including an adversary, can only evaluate O (·) by query-
ing.
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2. Behaving completely random: O ∈R F is drawn uniformly from all possible functions from the
domain to range.

In addtition to these conditions, proving security in the random oracle model actually employs other
tricks. In practice when we implement O with a concrete hash function (e.g., SHA), the security of the
scheme may beomce unjustified. Indeed, there is theoretical result showing that there exists some (con-
trived) scheme that is secure in RO but is insecure no matter what concret hash function we use to in-
stantiate the RO [CGH04]. However, for natural schemes the RO heuristic is still widely used and has not
witnessed any weakness (so far).
Full-doman Hash construction. Given ( f , f −1) as a trapdoor (one-way) permutation, a hash function
O modeled as an RO whose outputs fall into the codomain of f . We construct a signature scheme Σ =
(G ,S,V ) as follows

Full Domain Hash

KeyGen G(1λ) :
pk := f , sk := f −1.

Sign S(m, sk):

• Query O on m and get y :=
O (m),

• Compute σ := f −1(y). Out-
put σ.

Vrfy V (m,σ):
• Query and obtain y =

O (m).
• Accept iff. f (σ) = y .

Intuitively, a signature on m is just a random domain element of f which leaks no information about
the secret key (trapdoor). To forge a signature (without knowning f −1), an adversary would need to
invert a random output y of f , which is assumed to be hard. A crucial point in the formal proof relies on
a simple property enabled by the fact that f (and hence f −1 too) is a permutation. Namely the following
two procedures are indistinguishable (identical actually).

i) Pick an input x ∈ D at random, and output (x, f (x)).

ii) Pick an output y ∈ R at random, and output ( f −1(x), y).

Denote this property P.

2.2 Instantiations

Notice that the RSA function f (x) := xe (mod N ), f −1(y) := yd (mod N ) gives a trapdoor permutation
and can be plugged into FDH directly. In the post-quantum setting, it is possible to instantiate the FDH
approach using lattice and coding problems, but there are further technicalities to deal with.
Lattice-based FDH. Since SIS is surjective, it cannot be plugged into FDH directly. Gentry et al. [GPV08]
observed that in the property P, uniform distribution on the input is not essential. Instead a generalized
property P′ suffices for FDH. P′ says that the following two distributions are identical (upto negligible
error)

i) Pick x ← D from some canonical distribution χ on D (not necessarily uniform), and output
(x, f (x)).

ii) Pick y ∈R R uniformly from the range, and sample a preimage x ←χ { f −1(y)}. Output (x, y).

They formalized this idea in a notion called preimage samplable functions, and showed a construc-
tion based on the SIS problem where χ is a discrete Gaussian distribution.
Code-based FDH. Courtois et al. [CFS01] instantiatied FDH idea using the Syndrome decoding (SD)
problem, which is probably the only unbroken signature code-based signature scheme. One difficulty

3



was that the SD function fH (x) := H x is injective. In particular the output y from O may not be decodable
(i.e. outside the range of fH ). CFS addressed this by repeating, each time with a distinct counter, till
a decodable y has been generated from O . By setting proper parameters (n,k,d) and β, the resulting
scheme remains practical. CFS gave informal justification of the scheme’s security, and a formal proof
only appeared much later in 2007 [Dal07]. The proof was based on two assumptions:

1. H ←G(1λ), sampled according to the procedure we descibed before, and H ′ ∈R F
(n−k)×n
2 a uniform

random (parity check matrix) are compuationally indistinguishable.

2. gH ′(x) := H x for x ∈R F
n
2 with ‖x‖ ≤β is hard to invert.

Note that the two assumptions together imply that gH is also one-way and hence are stronger. How-
ever, in a recent work [FGUO+13], the first assumption was disproved under the parameter set for CFS
signature. This leaves a provable security of CFS signature at question.

3 Public-key Encryption

Given a trapdoor function, a natural proposal for an public-key encryption scheme would be setting
pk := f , sk := f −1 and letting

Enc(pk,m) := f (m); & Dec(sk,c) = f −1(c) .

The scheme using the RSA function is sometimes called the “text-book” RSA encryption. Other ex-
amples essentially fall into this category:

• lattice-based: some early proposals e.g., [GGH97]. NTRU [HPS98]?

• code-based: the two (equivalent) major proposals: McEliece [McE78] (using code-decoding CD
function, see Lecture 1) and Niederreiter [Nie86] (using syndrome-decoding SD function, see Lec-
ture 1).

• MQ-based: basically all proposals, e.g. Matsumoto&Imai [MI88] and Patarin’s Hidden Field Equa-
tion (HFE) [Pat96].

However the resulting schemes only ensures very weak security2. To get standard security notions
for PKE, we need more sophisticated constructions.

Recall two standard security notions for PKE

• IND-CPA (indistinguishable encryptions under chosen-plaintext-attacks): roughly, given cipher-
texts that encrypt either 0 or 1, and any adversary (implicitly having access to an encrytion oracle
since pk is public) cannot distinguish the two cases.

• IND-CCA (indistinguishable encryptions under chosen-ciphertext-attacks): roughly, we require
the same distinguishing task above being hard for any adversay, but the adversary is additionally
given access to a decryption oracle, with the only constraint that the decrypting query cannot be
the received ciphertext. Two variants: CCA1 and CCA2. Our future discussion refers to CCA2.

2This might be OK for typical use cases, where PKE is used as a Key-encapsulation Mechanism (KEM) to trasfer a randomly
genreated key for a symmetric encryption scheme.
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3.1 Achieving CPA- & CCA security in RO

Bellare-Rogaway CPA & CCA. In the seminal paper by Bellare and Rogaway [BR93], they formalized
the random-oracle model and (among other results) proposed constructions of IND-CPA and IND-CCA
(with an additional symmetric IND-CCA encryption) PKE in RO from any trapdoor one-way permuta-
tions.

We only discuss their IND-CPA construction in Fig. 1. Let ( f , f −1) be a trapdoor one-way permuta-
tion. Intuitively, as long as f is hard to invert, y would be totally random which acts as a one-time-pad
on plaintext m.

KeyGen G(1λ) :

pk := f , sk := f −1 .

Encrypt Enc(m, pk):
• r ∈R {0,1}k . Get y :=O (r ),
• Output c := ( f (r ), y ⊕m).

Decrypt Dec(sk,c):
• Parse c as (c1,c2).
• Compute r ← f −1(c1) and

output m := c2 ⊕O (r ).

Figure 1: IND-CPA PKE in RO from trapdoor permutations [BR93]

Efficiency improvement: OAEP & OAEP+. One shortcoming of the constructions above is the efficiency
overhead (e.g. longer ciphertexts). Bellare and Rogaway proposed another transformation - optimal
asymmetric encryption padding (OAEP) based on any trapdoor permutations, which they claimed to
achieved IND-CCA. However, a bug in their proof was later identified, and only IND-CPA (& IND-CCA-1)
can be achieved. Nonetheless OAEP with the RSA permutation is indeed IND-CCA as shown by [Sho01,
FOPS04], and RSA-OAEP was subsequently standardized in PKCS#1 v23. [FOPS04] actually showed that
any trapdoor permutation with the special partially one-way security property gives IND-CCA under
OAEP. Shoup [Sho01] also gave a variant of OAEP called OAEP + which achieves IND-CCA with any
trapdoor permutation (standard one-way).

We review OAEP here which employs the powerful Feistel network. We need

• ( f , f −1): a trapdoor permutation on {0,1}n+k0+k1 .

• O1 : {0,1}k0 → {0,1}n+k1 : random oracle 1.

• O2 : {0,1}n+k1 → {0,1}k0 : random oracle 2.

KeyGen G(1λ) :

pk := f , sk := f −1 .

Encrypt Enc(pk,m):
• Sample r ∈R {0,1}k0 . m′ :=

m‖0̄ denotes message m
appended with k1 bits of 0.

• Compute s := O1(r ) ⊕ m′,
and t :=O2(s)⊕ r .

• Output c := f (s‖t ).

Decrypt Dec(sk,c):
• Compute f −1(c) and parse

it as s‖t .
• Compute r :=O2(s)⊕ t and

m′ := O1(r )⊕ s. Output the
first n bits of m′ as m.

Figure 2: IND-CPA from OAEP [BR94]

Remark 1. Most (if not all) of these transformations should also work with injective trapdoor functions.
[Exercise: check if this is true.]

3https://tools.ietf.org/html/rfc2437.
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Other generic conversions in RO from weaker assumptions. Another aspect of improving the con-
structions above is to use weaker primitives (such as IND-CPA PKE) as opposed to injective trap-
door one-way functions. There are quite a few generic constructions in RO with various flavors,
see [FO99, Poi00, OP01, FO13]. An interesting question would be to figure out if we can instantiate
these constructions based on post-quantum problems. As an example, [KI01] showed how to con-
vert McEliece PKE to IND-CCA by the transformaitons of Fujisaki-Okamoto transformation [FO99],
Pointcheval [Poi00], and a more efficient variant of these two.

3.2 Direct CPA- & CCA-secure constructions

[Reading]
Lattice-based PKE. Regev’s PKE based on LWE [Reg09], achieves IND-CPA. The essence of the proof is a
leftover hash lemma. A dual version was proposed in [GPV08].

KeyGen G(1λ) :
• Sample A ∈R Z

m×n
q , s ∈R Z

n
q

and e ←χm .
• Output pk := (A,b := As +

e), sk := s.

Encrypt Enc(pk,m),m ∈
{0,1}:

• Sample r ∈R {0,1}m . Com-
pute p := r T A and u :=
r T b +m · bq/2e.

• Output c := (p,u).

Decrypt Dec(sk,c):

• Parse c as (p,u) and com-
pute z := u −p · s.

• Output 0 if z is closer to 0
and output 1 if z is closer to
b q

2 e.

Figure 3: Regev’s IND-CPA PKE from LWE

Observe that decryption is correct with high probability because

u −ps = r T (As +e)+m · bq

2
e− r T As = r T e +m · bq

2
e ≈ m · bq

2
e (mod q) .

Approximation holds because r T e is of small norm.
Peikert & Waters [PW11] introduced the notion of lossy trapdoor functions and constructed (the first)

IND-CCA PKE in the plain model (i.e., without RO) based on LWE. Soon after, Peikert [Pei09] gave a
simpler construction based on the injective trapdoor function from LWE we discussed earlier.
Code-based PKE. Nojima et al. [NIKM08] showed that the McEliece cryptosystem with a random
padding (roughly encrypting r‖m with random r , which may not be secure in general) achieves IND-
CPA. Döttling et al. [DDMQN12] constructed a variant of McElice based on ideas of [RS10] that realizes
IND-CCA. Based on the learning with parity (LPN) problem, Alekhnovich [Ale03] proposed a IND-CPA
encryption scheme. LPN is essentially the code decoding problem CD where the Generating matrix is
uniformly random. It can be viewed as a special case of LWE as well.
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(Incomplete) summary: PQ-Enc schemes

Approach Security Instantiation
Lattice Code MQ

“Text-book” RSA.
w. trapdoor func-
tions

one-way?
• [GGH97]
• NTRU [HPS98]?

McEliece [McE78],
Niederre-
iter [Nie86]

[MI88, Pat96] ...

Constructions in random-oracle model (RO)
[BR93] hybrid IND-CPA in RO applicable
[BR93] with CCA

Symmetric Enc
IND-CCA in RO applicable

OAEP [BR94] ≥ IND-CPA in RO applicable? can we get IND-CCA?
OAEP+ [Sho01] IND-CCA in RO applicable?
Other transfor-
mations [Poi00,
FO99, OP01]...

IND-CCA in RO KEM [Pei14] [KI01] applicable?

Direct constructions in plain model
Ex. leftover hash
lemma [HILL99]

IND-CPA [Reg09, GPV08] ... [Ale03, NIKM08] ?

“lossy” trapdoor
functions & cor-
related products

IND-CCA [PW11, Pei09,
MP12] ...

[DDMQN12] ?
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