
QIC 891 Topics in Quantum Safe Cryptography

Module 1: Post-Quantum Cryptography

Lecture 2

Lecturer: Fang Song May 12, 2016

Review.: 1) candidate problems: one-way& homomorphic; 2) MQ: schemes usually named after the
center polynomials, such as (OV,UOV,HFE). Modifiers (e.g., +, -, s) are often used as ad-hoc tricks to add
(+), discard (-), etc. a few polynomials.
Today. We will disucss main proposals for post-quantum (public-key) signature schemes. This lecture
will cover two generic approaches that are based on hash functions possibly with additional algebraic
properties. We will see another generic framework using functions with trapdoors in the next lecture.

1 Hash-based Signature

Hash-based signature scheme is essentially instantiating a generic approach of constructing signature
schemes based on one-way functions with efficient cryptographic hash functions such as the SHA-2
family (SHA-256, SHA-512) and the latest standard SHA-3 (Keccak).

Cryptographic hash functions are efficient algorithms that map (usually compress) input message
into fixed length output strings. They are designed in the hope that they behave similar to a totally
random function (though this is impossible formally). In particular, finding a preimage for an output
value as well as finding collisions (i.e. a pair of input messages that get mapped to the same output) are
deemed difficult. Namely, they are assumed to be one-way (preimage resistant) and collision-resistant.
In fact a common heuristic is to treat hash functions as a random oracle. This is the so called random-
oracle model, which we will encounter frequently later on.

The main goal of this section is showing the following.

Theorem 1. Assuming the existence of one-way functions (e.g. assuming SHA-2 is one-way), then there
exists a secure signature scheme.

The proof basically goes through two steps:

OWF (One-way functions)
a−→OTS (One-time signature)

b−→ full-fledged signature

(a) Building a one-time signature scheme from one-way functions.

(b) Using the Merkle-tree technique to convert a one-way signature scheme to a full-fledged scheme
that can sign unbounded many messages. The resulting scheme is stateful (some internal configu-
ration needs to be recorded and updated dynamically with every signature). This can be removed
using a pseudorandom function (which can be constructed based on OWF), getting a stateless
signature scheme.

For simplicity, we will look at Lamport’s OTS construction and a simple version of the Merkle-tree
construction. Read [Kat10, Chapter 2] for more details and other discussion on the generic construction.
In recent years many variants have been developed that are more efficient in terms of time complexity
and sizes of verification key and signatures. For instance, Winternitz-OTS and some optimized Merkle-
tree constructions have gain popularity (see e.g., [BDH11] and its followup works).
Definition of signature & security.

[...]
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1.1 One-time Signature from OWF

Lamport’s OTS construction [Lam79].
[standard materials...]

1.2 Getting full signature using Merkle-tree

Let Σ = (G ,S,V ) be a secure OTS which can sign messages that are twice as long as its public key, i.e.
|m| = 2|pk|. (Note that Lamport’s scheme does not immediately provide this feature. But this can be
achieved by compressing a long message with a universal-one-way hash function. UOWHF in turn can
be constructed from a OWF.)

[Picture of a Merkle tree]
We construct a new signature schemeΣ′ = (G ′,S′,V ′) that will be secure for signing multiple messages

from Σ. Basically we maintain a tree of height h to sign all h-bit messages:

• we lable every left edge 0 and every right edge 1, and each node of the tree is labeled with the prefix
of the path from the root. The root is denoted by ε. Each leaf (or rather path from root to leaf)
corresponds to a message. For example the left-most leaf node corresponds to string 0. . .0︸ ︷︷ ︸

h

.

• each node is associated with a OTS key-pair (pkp , skp ) indexed by the path from the root to itself.
Denote it (pkε, skε) at the root. They are generated independently and adaptively, which is part
of the state that the signing algorithm maintains and keeps updating whenever producing a new
signature.

• Signing a message m consists of

1) σ0 := S(skm ,m), signing m using the OTS signing algorithm and the leaf secret key.

2) σ1 := (auth(0)
1 , . . . ,auth(h−1)

1 ), an “authentication” list that signs the two public keys of the chil-

dren of each node on the path from root to leaf m. Specifically, each auth
j
1 is associated with

the node of m j ( j th prefix of the message m) and contains the public keys at m j and its two
children (i.e., pkm j and (pkm j 0, pkm j 1)) as well as the signature S(skm j , (pkm j 0, pkm j 1)). The
Signer generates new key pairs of OTS Σwhen necessary, and they are appended in the state
that the Signer maintains.

• To verify (m, (σ0,σ1)), we first verify the authentication path specified by σ1. Namely for every j =
0, . . . ,h −1, we check if V (pkm j , (pkm j 0, pkm j 1),σ j

1). If this passes, we accept if V (pkm ,m,σ0) = 1.

See a complete description of Σ′ = (G ′,S′,V ′) in Figure 1.

Figure 1: Full signature scheme from OTS using Merkle tree

We can show that Σ′ is a secure signature scheme. Intuitively, this is because at any time a secret
key at any node signs at most one message, which is either an actual message at the leaf node or a pair
of public keys at two child nodes. The intuition can be turned into a formal reduction that breaks the
one-time security of OTS Σ from any adversary that breaks Σ′.

Remark 1. In principle all the candidate problems from Lecture 1 give rise to one-way functions which
can instantiate this generic construction. But people use SHA family for efficiency as well as security
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concerns. SHA family has resisted extensive cryptanalysis and there is no clear structure that seems
feasible for quantum algorithms to exploit other than a generic quadratic speedup by Grover’s search
algorithm. Formal security analysis of this approach against quantum attacks can be found in [Son14].

2 Signature from “Homomorphic” hash functions

The second generic “trapdoor-less” approach for signatures follows the Fiat-Shamir paradigm realized
by hash functiions that are homomorphic in certain sense. Basically

“homomorphic” hash functions
a−→ Identification (ID)

b−→ signatures

(a) Using hash functions with some homomorphic property (e.g., some functions from Lecture 1),
we can construct an identification (ID) scheme. An ID scheme is basically an interactive protocol
where a prover convinces a verifier that s/he is whoever s/he claims to be.

(b) Converting ID into a signature using the Fiat-Shamir transformation, which is a common heuris-
tic to remove interaction in protocols. The transformation uses another hash function, which is
treated as a random oracle.

For more information about identification and the Fiat-Shamir transformation, such as a formal def-
inition of ID and other ID schemes based on factoring and discrete logarithm, see [Kat10, Chapter 8].

2.1 Identification from “Homomorphic” Hash

An ID scheme consists of (G ,P,V ): a key generating algorithm G and an interactive protocol described by
two interactive machines P and V , called the prover and verifier respectively.

• (pk, sk) ←G(1λ). Secret sk is given to the prover, and pk is handed to verifier V .

• (P,V ) executes the interactive protocol and in the end V output one bit indicating accepting or
rejecting. We will consider atypical 3-round protocol.

P
Y−→ V
c←−
z−→

Roughly we’d need an ID scheme to satisfy

• Correctness: A honest prover with the secret key will make the verifier accept with high probability.

• Security: we want that no one can impersonate a prover without knowing a secret key. But this
is too weak and we need that the protocol is somewhat “zero-knowledge”: even if an adversary A

(e.g., a malicious verifier) has see transcripts of executing the protocol with a honest prover, A still
cannot pass the verification by impersonating the prover and convincing another person.

[a toy example to motivate security]

A template using “homomorphic” one-way hash functions.
This is motivated by some existing ID schemes based on factoring or discrete logarithm (e.g.,

Schnorr’s ID scheme). Let h : D → R be a function that is homormorphic: h(a +b) = h(a)+h(b). The
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Sample x ← D from domain. Set pk = X = h(x), sk = x.

• P samples y ← D , and sends Y = h(y) to V .

• V picks c ∈R C uniformlly at random. C is the challenge space which is
{0,1} here.

• P computes z := y + cx and sends z to V .

• V accepts iff. h(z) = Y + c X .

Correctness follows from the homomorphic property of h since h(z) = h(y)+h(cx) = Y + c X . Secu-
rity may be based on one-wayness of h. This protocol can be repeated in parallel while preserving the
security. This would give rise to an ID scheme with large challenge space.
Instantiating based on lattices (e.g.,SIS).

One subtle issue arises when implementing the template using e.g., the SIS problem. The one-
wayness holds for small-norm inputs only, therefore y+x may leak some information about the secret x.
To address this, some technique for “safety” check and aborting was introduced. This line of work started
from [Lyu08] based on SIS, with further developments in [KTX08, Lyu09, Lyu12, DDLL13]. Efficiency has
been improved both due to using ring-versions as well as more refined techniques for safety check. The
most efficient scheme to date probably goes to called BLISS [DDLL13].

Remark 2. Classical security proof for ID schemes uses a technique of rewinding, which faces severe
challenges against quantum attackers. We will say more in a future lecture.

Instantiating based on coding problems. Stern’s scheme [Ste96] is the only wide-accepted one. It differs
slightly from the template. The lattice-based ID scheme [KTX08] was actually inspired by Stern’s scheme.

[Exercise: is the deviation from the template essential? Is it possible to get a variant?]
Instantiating with MQ. N/A.

2.2 Signature from Identification: Fiat-Shamir Paradigm

Let O : D → R be uniformly drawn from all possible functions from its domain D to codomain R. We
assume that O is provided as a black-box so that everyone can only query O to evaluate x 7→O (x). This is
the so called random-oracle model.

Basically the Fiat-Shamir transform lets the prover run an instance of the identification protocol by
itself, generating the challenge c by applying a hash function O to the first message Y and then comput-
ing an appropriate response z using the secret key. The signature.

Let (Gen,P,V ) be a secure ID scheme.

• G : using the KeyGen algorithm of ID, i.e., (sk, pk) ←Gen(1λ).

• S(sk,m): to sign a message m, run P and get y,Y = h(y). Let c :=
O (Y ,m). Then produce response z = P (y,c). Output the signature be-
ing σ := (Y , z).

• V (pk,σ = (Y , z)): evaluate c := O (m,Y ) and accept iff. V (Y ,c, z) ac-
cepts.

Remark 3. The FS transformation is provably secure in the random oracle model. However in the quan-
tum setting, it is natural to give the adversary quantum superposition access to the (hash function) oracle.
Classically proofs fail at large in this new setting (so called quantum random-oracle model). We will come
back to this issue in a future lecture.
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3 Signing with trapdoors

[The following will be discussed next time.]

3.1 Full-Domain Hash

3.2 Instantiations
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(Incomplete) summary: PQ-Sign schemes

Approach Instantiation Remarks
Without trapdoors
Hash-based
OWF→OTS

∗→ Sign
*: Merkle tree [Mer90]

SHA family
[BDH11] and many variants, stateless
scheme [BHH+15]

Need: more quantum
cryptanalysis consid-
ering internal design
of SHA

“Homomorphic”
hash
hash → ID

∗→ Sign
*: Fiat-Shamir

Lattice: safety check with aborting.
SIS [Lyu08, KTX08], Ring-SIS [Lyu09],
both [Lyu12, DDLL13]
Code: [Ste96]
MQ: N/A

[KTX08] inspired
by [Ste96].
Adapt ideas from lat-
tice ID to code-based?
Quantum security
unclear: quantum
rewinding+FS in QRO

With trapdoors
“Text-book” RSA
σ= f −1(sk,m)
e.g. σ= md (mod N )

Lattice: [GGH97], NTUSign [HPS01,
HHGP+03] (broken [NR09, DN12])
Code: early proposals broken
MQ: majority (many broken)

Bad idea, avoid!

Hash-&-Sign in RO
(Full-domain hash)
σ= f −1(sk,O (m))
O : random-oracle

Lattice: [GPV08, MP12]
Code: [CFS01]. Formal proof of CFS01
in [Dal07], but one of the assumptions
was disproved in [FGUO+13].

adapt lattice ideas to
code?
Fix [CFS01] proof?

Direct constructions
without RO

Lattice: [Boy10, CHKP12, DM14, AS15] provably secure code
& MQ-based unclear
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