
QIC 891 Topics in Quantum Safe Cryptography

Module 1: Post-Quantum Cryptography

Lecture 1

Lecturer: Fang Song May 10, 2016

Today. Part I (on slides): Setting the scene for post-quantum crypto: classical cryptographic schemes
that are secure against quantum attacks. Part II (here): candidate problems proposed in lattices, coding
theory and multivariate quadratic equations that people use to construct post-quantum cryptosystems.

1 Lattice-based

Two prominent problems in lattice cryptogrphy are Short Integer Solution (SIS) and learning with errors
(LWE). They can be defined purely by linear algebra (matrices) without referring to lattices. We will defer
the discuss about lattices and the connection between SIS & LWE and (actual) lattice problems in the
last lecture.
Short Integer Solution [Ajt96,MR07] (SISn,q,β,m). LetZq be the additive group modulo a large integer q .

• Given: A = (a1, . . . , am) ∈Zn×m
q , ai ∈Zn

q .

• Goal: Find x ∈Zm
q with ‖x‖ ≤β s.t. f A(x) := Ax (mod q) = 0.

Observations.

• f A is surjective under typical setting: m ≥ n log q for m = poly(n), q > β ·poly(n) and x ∈ {0±1}m

(hence β∼p
m).

• f A is (approximately) homomorphic: f A(x1+x2) = f A(x1)+ f A(x2). This is true only when the inputs
remain small norm.

• We can also consider solving the inhomogeneous system (A,b) ∈Zn×m
q ×Zm

q . It is essentially equiv-
alent to the homogeneous version for typical parameters.

Assumption 1. Let A ∈R Z
n×m
q be uniformly at random, then SISn,q,β,n is hard to solve for poly-time

algorithms (classical & quantum). Likewise let A ∈R Z
n×m
q and x ← U for uniform distribution U on

{x ∈Zm
q : ‖x‖ ≤β}), then f A(x) is hard to invert.

Learning With Errors [Reg09] (LWEn,q,χ,m). Let χ be some error distribution on Zq .

• Given: (A,b), where A = (a1, . . . am)T ∈Zm×n
q , ai ∈Zn

q and

b = g A(s,e) := As +e (mod q) ∈Zn
q , with s ∈Zn

q ,e ←χm .

• Goal: Find s.

Observations.

• g A is injective under typical setting: n log q +m logE ≤ m log q , where E ∼ p
n is the bound on

errors drawn from χ.

• g A is (approximately) homomorphic in the following sense: g A1 (s,e1)+g A2 (s,e2) = g A1+A2 (s,e1+e2).
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Assumption 2. Let A ∈R Z
n×m
q , s ∈R Z

n
q and e ← χm for some χ (e.g. rounded Gaussian p(z) ∝ e−π|z|

2/r 2

with r ≥p
n), then LWEn,q,χ,m is hard to solve for poly-time algorithms (classical & quantum), i.e. g A(s,e)

is hard to invert. This implies that g A is also a pseudorandom generator (via a Search to Decision reduc-
tion) in the sense that (A,b := g A(s,e)) ≈c U (Zm×n

q ×Zq ) (≈c means “computationally hard to distinguish
for any poly-time algorithms”).

Remark 1. For efficiency reason, there are also Ring-based SIS and LWE problems, whose hardness relate
to computational problems in structured lattices called ideal lattices [Mic07,LM06,PR06,LPR13,SSTX09].
Read more about lattice cryptography in Peikert’s recent (amazing) survey [Pei15].

2 Code-based

Error correcting codes are ubiquitous in digital communications. They provide a mechanism to encode
message to resist (random) errors that occur via communication channels. Here we introduce binary
linear codes. A binary linear code denoted C : [n,k,d ] is a subspace of Fn

2 .

• n: codeword length

• k: message length, usually referred to as the dimension (the rank really)

• d : minimum distance, i.e., d := minx,y∈C ‖x − y‖. ‖z‖ represents the Hamming weight of z which
is the number of 1’s in z.

[Exercise: show that distance d code can (not necessarily efficiently) correct up to bd−1
2 c errors. Hint:

a “packing” argument.]
There are two ways of describing a linear code:

• Generating matrix G ∈ Fn×k
2 :

C :=
{

c ∈ Fn
2 : c =Gw for some w ∈ Fk

2

}
.

• Parity check matrix H ∈ F(n−k)×n
2 :

C := {
c ∈ Fn

2 : Hc = 0
}

.

Remarks.

• Given a perturbed codeword c ′ = c + e by error e, observe that Hc ′ = H(c + e) = He. s := He is
usually called the error syndrome.

• Generating matrix and the parity check matrix of a linear code (n,k,d) can be transformed in a
systematic form:

G =
(

Q(n−k)×k

1k

)
, H = (

1n−k |−Q(n−k)×k
)

.

[Verify: HG =0]

We are now ready to define two major problems in coding theory as the foundation for code-based
crypto (Read [DES06] for an introduction on code-based crypto.). Syntactically, they look similar to SIS
& LWE. Let C ⊆ Fn

2 be an [n,k,d ] binary linear code. All operations are in F2.
Syndrome Decoding (SDn,k,β). (Underlying Niederreiter PKE [Nie86])
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• Given: (parity check matrix) H ∈ F(n−k)×n
2 and (syndrome) s ∈ Fn−k

2 .

• Goal: Find e ∈ Fn
2 with ‖e‖ =β s.t. fH (x) := H x = s.

Observations.

• fH injective under typical setting:
(n
β

)≤ 2n−k .

Assumption 3. let H0 ∈ F(n−k)×n
2 be the parity check matrix for some code C for which syndrome decod-

ing is efficient (e.g., binary Goppa code), and P ∈R Sn be a random permutation matrix. Then gH (·) is
hard to invert where H := H0P .

Codeword Decoding (CDn,k,β). (underlying McEliece PKE [McE78])

• Given: (generating matrix) G ∈ Fn×k
2 and (codeword possibly with error) z ∈ Fn

2 .

• Goal: Find w ∈ Fk
2 s.t. gG (w) :=Gw +e = z for some “small” error e with ‖e‖ =β.

Observations.

• Coding theory convention usually uses row vectors (e.g. wGT ).

• gG injective under typical setting: 2k × (n
β

)≤ 2n .

Assumption 4. let G0 ∈ Fn×k
2 be the generating matrix for some code C for which codeword decoding is

efficient (e.g., binary Goppa code), P ∈ Fn×n
2 be the matrix of a random permutationπ← Sn and S ∈R F

k×k
2

be a random invertible matrix. Then gG (·) is hard to invert where G := PG0S.

3 Multivariate-Polynomial-based

Multivariate Quadratic Polynomial Equations (MQn,k ). All operations are in some finite field F.

• Given: (pi , yi )k
i=1 where

pi =αi +
∑
j ,`
λi j`x j x`

are qudratic polynomial in variables x1, . . . , xn and αi ∈ F.

• Goal: Find (x1, . . . xn) ∈ Fn s.t. fP (x1, . . . , xn) := (. . . , pi (x1, . . . , xn), . . .) = (. . . , yi , . . .).

Assumption 5. let P0 be a collection of quadratic polynomials which are easy to solve. Let S and T be
random affine transformations Fn → Fn . Then fP (·) is hard to invert where P := T P0S.

{xi } → S → P0 → T︸ ︷︷ ︸
P

→ {yi }

Remarks.

• The main work in MQ-based crypto is to find “good” center polynomials P0. Examples include:
Oil-Vineger, Unbalanced Oil-Vineger, Hidden Field Equations (HFE) etc.

• Modifiers (+,-,v, ...) making P0 more secure. +: add eqns; -: discard eqns; s: pick sparse polynomi-
als.

• Wolf & Preneel [WP05] gave a nice survey on the taxonomy of MQ-based crypto.
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A cautionary remark

Notice that in code-based crypto and MQ-based crypto, as illustrated in Assumptions 3, 4, 5, people
start from an easy instance and try to obfuscate it by some randomization trick in hope of producing a
hard instance. This might lead to unsafe constructions, and extreme caution should be taken (though
it seems difficult in theory to determine what’d be a safe randomization strategy). This is in contrast
to lattice crypto, as we have seen in SIS and LWE, where the problem instance is randomly generated.
The hardness is then guaranteed by the (assumed) worst-case hardness of lattice problems due to the
surprising worst-case to average-case reduction.

[Exercise. Read about how RSA instances (e.g. p, q, N ,e,d) are generated. Compare with the post-
quantum proposals.]
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