
252 Chapter 6 Dynamic Programming

brute-force search: although it’s systematically working through the exponen-
tially large set of possible solutions to the problem, it does this without ever
examining them all explicitly. It is because of this careful balancing act that
dynamic programming can be a tricky technique to get used to; it typically
takes a reasonable amount of practice before one is fully comfortable with it.

With this in mind, we now turn to a first example of dynamic program-
ming: the Weighted Interval Scheduling Problem that we defined back in
Section 1.2. We are going to develop a dynamic programming algorithm for
this problem in two stages: first as a recursive procedure that closely resembles
brute-force search; and then, by reinterpreting this procedure, as an iterative
algorithm that works by building up solutions to larger and larger subproblems.

6.1 Weighted Interval Scheduling:
A Recursive Procedure

We have seen that a particular greedy algorithm produces an optimal solution
to the Interval Scheduling Problem, where the goal is to accept as large a
set of nonoverlapping intervals as possible. The Weighted Interval Scheduling
Problem is a strictly more general version, in which each interval has a certain
value (or weight), and we want to accept a set of maximum value.

Designing a Recursive Algorithm
Since the original Interval Scheduling Problem is simply the special case in
which all values are equal to 1, we know already that most greedy algorithms
will not solve this problem optimally. But even the algorithm that worked
before (repeatedly choosing the interval that ends earliest) is no longer optimal
in this more general setting, as the simple example in Figure 6.1 shows.

Indeed, no natural greedy algorithm is known for this problem, which is
what motivates our switch to dynamic programming. As discussed above, we
will begin our introduction to dynamic programming with a recursive type of
algorithm for this problem, and then in the next section we’ll move to a more
iterative method that is closer to the style we use in the rest of this chapter.

Index

1

2

3

Value = 1

Value = 3

Value = 1

Figure 6.1 A simple instance of weighted interval scheduling.

Fang Song
Don’t distribute. Only for use in CSCE629 Fall 2019 at TAMU�



6.1 Weighted Interval Scheduling: A Recursive Procedure 253

We use the notation from our discussion of Interval Scheduling in Sec-
tion 1.2. We have n requests labeled 1, . . . , n, with each request i specifying a
start time si and a finish time fi. Each interval i now also has a value, or weight
vi. Two intervals are compatible if they do not overlap. The goal of our current
problem is to select a subset S ⊆ {1, . . . , n} of mutually compatible intervals,
so as to maximize the sum of the values of the selected intervals,

∑
i∈S vi.

Let’s suppose that the requests are sorted in order of nondecreasing finish
time: f1≤ f2≤ . . .≤ fn. We’ll say a request i comes before a request j if i < j.
This will be the natural left-to-right order in which we’ll consider intervals.
To help in talking about this order, we define p(j), for an interval j, to be the
largest index i < j such that intervals i and j are disjoint. In other words, i
is the leftmost interval that ends before j begins. We define p(j) = 0 if no
request i < j is disjoint from j. An example of the definition of p(j) is shown
in Figure 6.2.

Now, given an instance of the Weighted Interval Scheduling Problem, let’s
consider an optimal solution O, ignoring for now that we have no idea what
it is. Here’s something completely obvious that we can say about O: either
interval n (the last one) belongs to O, or it doesn’t. Suppose we explore both
sides of this dichotomy a little further. If n ∈O, then clearly no interval indexed
strictly between p(n) and n can belong to O, because by the definition of p(n),
we know that intervals p(n)+ 1, p(n)+ 2, . . . , n − 1 all overlap interval n.
Moreover, if n ∈ O, then O must include an optimal solution to the problem
consisting of requests {1, . . . , p(n)}—for if it didn’t, we could replace O’s
choice of requests from {1, . . . , p(n)} with a better one, with no danger of
overlapping request n.

Index

1

2

3

4

5

6

p(1) = 0

p(2) = 0

p(3) = 1

p(4) = 0

p(5) = 3

p(6) = 3

v1 = 2

v3 = 4

v2 = 4

v5 = 2

v6 = 1

v4 = 7

Figure 6.2 An instance of weighted interval scheduling with the functions p(j) defined
for each interval j.



254 Chapter 6 Dynamic Programming

On the other hand, if n �∈O, then O is simply equal to the optimal solution
to the problem consisting of requests {1, . . . , n − 1}. This is by completely
analogous reasoning: we’re assuming that O does not include request n; so if
it does not choose the optimal set of requests from {1, . . . , n − 1}, we could
replace it with a better one.

All this suggests that finding the optimal solution on intervals {1, 2, . . . , n}
involves looking at the optimal solutions of smaller problems of the form
{1, 2, . . . , j}. Thus, for any value of j between 1and n, let Oj denote the optimal
solution to the problem consisting of requests {1, . . . , j}, and let OPT(j) denote
the value of this solution. (We define OPT(0)= 0, based on the convention
that this is the optimum over an empty set of intervals.) The optimal solution
we’re seeking is precisely On, with value OPT(n). For the optimal solution Oj
on {1, 2, . . . , j}, our reasoning above (generalizing from the case in which
j = n) says that either j ∈ Oj, in which case OPT(j)= vj + OPT(p(j)), or j �∈ Oj,
in which case OPT(j)= OPT(j − 1). Since these are precisely the two possible
choices (j ∈ Oj or j �∈ Oj), we can further say that

(6.1) OPT(j)=max(vj + OPT(p(j)), OPT(j − 1)).

And how do we decide whether n belongs to the optimal solution Oj? This
too is easy: it belongs to the optimal solution if and only if the first of the
options above is at least as good as the second; in other words,

(6.2) Request j belongs to an optimal solution on the set {1, 2, . . . , j} if and
only if

vj + OPT(p(j))≥ OPT(j − 1).

These facts form the first crucial component on which a dynamic pro-
gramming solution is based: a recurrence equation that expresses the optimal
solution (or its value) in terms of the optimal solutions to smaller subproblems.

Despite the simple reasoning that led to this point, (6.1) is already a
significant development. It directly gives us a recursive algorithm to compute
OPT(n), assuming that we have already sorted the requests by finishing time
and computed the values of p(j) for each j.

Compute-Opt(j)

If j = 0 then

Return 0

Else

Return max(vj+Compute-Opt(p(j)), Compute-Opt(j − 1))

Endif



6.1 Weighted Interval Scheduling: A Recursive Procedure 255

The correctness of the algorithm follows directly by induction on j:

(6.3) Compute-Opt(j) correctly computes OPT(j) for each j = 1, 2, . . . , n.

Proof. By definition OPT(0)= 0. Now, take some j > 0, and suppose by way
of induction that Compute-Opt(i) correctly computes OPT(i) for all i < j. By
the induction hypothesis, we know that Compute-Opt(p(j))= OPT(p(j)) and
Compute-Opt(j − 1)= OPT(j − 1); and hence from (6.1) it follows that

OPT(j)=max(vj + Compute-Opt(p(j)), Compute-Opt(j − 1))

= Compute-Opt(j).

Unfortunately, if we really implemented the algorithm Compute-Opt as
just written, it would take exponential time to run in the worst case. For
example, see Figure 6.3 for the tree of calls issued for the instance of Figure 6.2:
the tree widens very quickly due to the recursive branching. To take a more
extreme example, on a nicely layered instance like the one in Figure 6.4, where
p(j)= j − 2 for each j = 2, 3, 4, . . . , n, we see that Compute-Opt(j) generates
separate recursive calls on problems of sizes j − 1 and j − 2. In other words,
the total number of calls made to Compute-Opt on this instance will grow

OPT(6)

OPT(5)

OPT(4) OPT(3)

OPT(1)OPT(2)

OPT(2)

OPT(2) OPT(1)

OPT(1)

OPT(1)

OPT(3)

OPT(1)

OPT(3)

OPT(1)

The tree of subproblems
grows very quickly.

Figure 6.3 The tree of subproblems called by Compute-Opt on the problem instance
of Figure 6.2.



256 Chapter 6 Dynamic Programming

Figure 6.4 An instance of weighted interval scheduling on which the simple Compute-
Opt recursion will take exponential time. The values of all intervals in this instance
are 1.

like the Fibonacci numbers, which increase exponentially. Thus we have not
achieved a polynomial-time solution.

Memoizing the Recursion
In fact, though, we’re not so far from having a polynomial-time algorithm.
A fundamental observation, which forms the second crucial component of a
dynamic programming solution, is that our recursive algorithm Compute-
Opt is really only solving n + 1 different subproblems: Compute-Opt(0),
Compute-Opt(1), . . . , Compute-Opt(n). The fact that it runs in exponential
time as written is simply due to the spectacular redundancy in the number of
times it issues each of these calls.

How could we eliminate all this redundancy? We could store the value of
Compute-Opt in a globally accessible place the first time we compute it and
then simply use this precomputed value in place of all future recursive calls.
This technique of saving values that have already been computed is referred
to as memoization.

We implement the above strategy in the more “intelligent” procedure M-
Compute-Opt. This procedure will make use of an array M[0 . . . n]; M[j] will
start with the value “empty,” but will hold the value of Compute-Opt(j) as
soon as it is first determined. To determine OPT(n), we invoke M-Compute-
Opt(n).

M-Compute-Opt(j)

If j = 0 then

Return 0

Else if M[j] is not empty then

Return M[j]

Else



6.1 Weighted Interval Scheduling: A Recursive Procedure 257

Define M[j] = max(vj+M-Compute-Opt(p(j)), M-Compute-Opt(j − 1))

Return M[j]

Endif

Analyzing the Memoized Version
Clearly, this looks very similar to our previous implementation of the algo-
rithm; however, memoization has brought the running time way down.

(6.4) The running time of M-Compute-Opt(n) is O(n) (assuming the input
intervals are sorted by their finish times).

Proof. The time spent in a single call to M-Compute-Opt is O(1), excluding the
time spent in recursive calls it generates. So the running time is bounded by a
constant times the number of calls ever issued to M-Compute-Opt. Since the
implementation itself gives no explicit upper bound on this number of calls,
we try to find a bound by looking for a good measure of “progress.”

The most useful progress measure here is the number of entries in M that
are not “empty.” Initially this number is 0; but each time the procedure invokes
the recurrence, issuing two recursive calls to M-Compute-Opt, it fills in a new
entry, and hence increases the number of filled-in entries by 1. Since M has
only n+ 1entries, it follows that there can be at most O(n) calls to M-Compute-
Opt, and hence the running time of M-Compute-Opt(n) is O(n), as desired.

Computing a Solution in Addition to Its Value
So far we have simply computed the value of an optimal solution; presumably
we want a full optimal set of intervals as well. It would be easy to extend
M-Compute-Opt so as to keep track of an optimal solution in addition to its
value: we could maintain an additional array S so that S[i] contains an optimal
set of intervals among {1, 2, . . . , i}. Naively enhancing the code to maintain
the solutions in the array S, however, would blow up the running time by an
additional factor of O(n): while a position in the M array can be updated in
O(1) time, writing down a set in the S array takes O(n) time. We can avoid
this O(n) blow-up by not explicitly maintaining S, but rather by recovering the
optimal solution from values saved in the array M after the optimum value
has been computed.

We know from (6.2) that j belongs to an optimal solution for the set
of intervals {1, . . . , j} if and only if vj + OPT(p(j)) ≥ OPT(j − 1). Using this
observation, we get the following simple procedure, which “traces back”
through the array M to find the set of intervals in an optimal solution.



258 Chapter 6 Dynamic Programming

Find-Solution(j)

If j = 0 then

Output nothing

Else

If vj +M[p(j)]≥M[j − 1] then

Output j together with the result of Find-Solution(p(j))

Else

Output the result of Find-Solution(j − 1)

Endif

Endif

Since Find-Solution calls itself recursively only on strictly smaller val-
ues, it makes a total of O(n) recursive calls; and since it spends constant time
per call, we have

(6.5) Given the array M of the optimal values of the sub-problems, Find-
Solution returns an optimal solution in O(n) time.

6.2 Principles of Dynamic Programming:
Memoization or Iteration over Subproblems

We now use the algorithm for the Weighted Interval Scheduling Problem
developed in the previous section to summarize the basic principles of dynamic
programming, and also to offer a different perspective that will be fundamental
to the rest of the chapter: iterating over subproblems, rather than computing
solutions recursively.

In the previous section, we developed a polynomial-time solution to the
Weighted Interval Scheduling Problem by first designing an exponential-time
recursive algorithm and then converting it (by memoization) to an efficient
recursive algorithm that consulted a global array M of optimal solutions to
subproblems. To really understand what is going on here, however, it helps
to formulate an essentially equivalent version of the algorithm. It is this new
formulation that most explicitly captures the essence of the dynamic program-
ming technique, and it will serve as a general template for the algorithms we
develop in later sections.

Designing the Algorithm
The key to the efficient algorithm is really the array M. It encodes the notion
that we are using the value of optimal solutions to the subproblems on intervals
{1, 2, . . . , j} for each j, and it uses (6.1) to define the value of M[j] based on


