
Chapter 13

Randomized Algorithms

The idea that a process can be “random” is not a modern one; we can trace
the notion far back into the history of human thought and certainly see its
reflections in gambling and the insurance business, each of which reach into
ancient times. Yet, while similarly intuitive subjects like geometry and logic
have been treated mathematically for several thousand years, the mathematical
study of probability is surprisingly young; the first known attempts to seriously
formalize it came about in the 1600s. Of course, the history of computer science
plays out on a much shorter time scale, and the idea of randomization has been
with it since its early days.

Randomization and probabilistic analysis are themes that cut across many
areas of computer science, including algorithm design, and when one thinks
about random processes in the context of computation, it is usually in one of
two distinct ways. One view is to consider the world as behaving randomly:
One can consider traditional algorithms that confront randomly generated
input. This approach is often termed average-case analysis, since we are
studying the behavior of an algorithm on an “average” input (subject to some
underlying random process), rather than a worst-case input.

A second view is to consider algorithms that behave randomly: The world
provides the same worst-case input as always, but we allow our algorithm to
make random decisions as it processes the input. Thus the role of randomiza-
tion in this approach is purely internal to the algorithm and does not require
new assumptions about the nature of the input. It is this notion of a randomized
algorithm that we will be considering in this chapter.
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Why might it be useful to design an algorithm that is allowed to make
random decisions? A first answer would be to observe that by allowing ran-
domization, we’ve made our underlying model more powerful. Efficient de-
terministic algorithms that always yield the correct answer are a special case
of efficient randomized algorithms that only need to yield the correct answer
with high probability; they are also a special case of randomized algorithms
that are always correct, and run efficiently in expectation. Even in a worst-
case world, an algorithm that does its own “internal” randomization may be
able to offset certain worst-case phenomena. So problems that may not have
been solvable by efficient deterministic algorithms may still be amenable to
randomized algorithms.

But this is not the whole story, and in fact we’ll be looking at randomized
algorithms for a number of problems where there exist comparably efficient de-
terministic algorithms. Even in such situations, a randomized approach often
exhibits considerable power for further reasons: It may be conceptually much
simpler; or it may allow the algorithm to function while maintaining very little
internal state or memory of the past. The advantages of randomization seem
to increase further as one considers larger computer systems and networks,
with many loosely interacting processes—in other words, a distributed sys-
tem. Here random behavior on the part of individual processes can reduce the
amount of explicit communication or synchronization that is required; it is
often valuable as a tool for symmetry-breaking among processes, reducing the
danger of contention and “hot spots.” A number of our examples will come
from settings like this: regulating access to a shared resource, balancing load
on multiple processors, or routing packets through a network. Even a small
level of comfort with randomized heuristics can give one considerable leverage
in thinking about large systems.

A natural worry in approaching the topic of randomized algorithms is that
it requires an extensive knowledge of probability. Of course, it’s always better
to know more rather than less, and some algorithms are indeed based on
complex probabilistic ideas. But one further goal of this chapter is to illustrate
how little underlying probability is really needed in order to understand many
of the well-known algorithms in this area. We will see that there is a small set
of useful probabilistic tools that recur frequently, and this chapter will try to
develop the tools alongside the algorithms. Ultimately, facility with these tools
is as valuable as an understanding of the specific algorithms themselves.

13.1 A First Application: Contention Resolution
We begin with a first application of randomized algorithms—contention res-
olution in a distributed system—that illustrates the general style of analysis
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we will be using for many of the algorithms that follow. In particular, it is a
chance to work through some basic manipulations involving events and their
probabilities, analyzing intersections of events using independence as well as
unions of events using a simple Union Bound. For the sake of completeness,
we give a brief summary of these concepts in the final section of this chapter
(Section 13.15).

The Problem
Suppose we have n processes P1, P2, . . . , Pn, each competing for access to
a single shared database. We imagine time as being divided into discrete
rounds. The database has the property that it can be accessed by at most
one process in a single round; if two or more processes attempt to access
it simultaneously, then all processes are “locked out” for the duration of that
round. So, while each process wants to access the database as often as possible,
it’s pointless for all of them to try accessing it in every round; then everyone
will be perpetually locked out. What’s needed is a way to divide up the rounds
among the processes in an equitable fashion, so that all processes get through
to the database on a regular basis.

If it is easy for the processes to communicate with one another, then one
can imagine all sorts of direct means for resolving the contention. But suppose
that the processes can’t communicate with one another at all; how then can
they work out a protocol under which they manage to “take turns” in accessing
the database?

Designing a Randomized Algorithm
Randomization provides a natural protocol for this problem, which we can
specify simply as follows. For some number p > 0 that we’ll determine shortly,
each process will attempt to access the database in each round with probability
p, independently of the decisions of the other processes. So, if exactly one
process decides to make the attempt in a given round, it will succeed; if
two or more try, then they will all be locked out; and if none try, then the
round is in a sense “wasted.” This type of strategy, in which each of a set
of identical processes randomizes its behavior, is the core of the symmetry-
breaking paradigm that we mentioned initially: If all the processes operated
in lockstep, repeatedly trying to access the database at the same time, there’d
be no progress; but by randomizing, they “smooth out” the contention.

Analyzing the Algorithm
As with many applications of randomization, the algorithm in this case is
extremely simple to state; the interesting issue is to analyze its performance.
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Defining Some Basic Events When confronted with a probabilistic system
like this, a good first step is to write down some basic events and think about
their probabilities. Here’s a first event to consider. For a given process Pi and a
given round t, let A[i, t]denote the event that Pi attempts to access the database
in round t. We know that each process attempts an access in each round with
probability p, so the probability of this event, for any i and t, is Pr

[
A[i, t]

]= p.
For every event, there is also a complementary event, indicating that the event
did not occur; here we have the complementary event A[i, t] that Pi does not
attempt to access the database in round t, with probability

Pr
[
A[i, t]

]
= 1− Pr

[
A[i, t]

]= 1− p.

Our real concern is whether a process succeeds in accessing the database in
a given round. Let S[i, t]denote this event. Clearly, the process Pi must attempt
an access in round t in order to succeed. Indeed, succeeding is equivalent to
the following: Process Pi attempts to access the database in round t, and each
other process does not attempt to access the database in round t. Thus S[i, t] is
equal to the intersection of the event A[i, t]with all the complementary events
A[j, t], for j �= i:

S[i, t]=A[i, t]∩
⎛
⎝⋂

j �=i

A[j, t]

⎞
⎠ .

All the events in this intersection are independent, by the definition of the
contention-resolution protocol. Thus, to get the probability of S[i, t], we can
multiply the probabilities of all the events in the intersection:

Pr
[
S[i, t]

]= Pr
[
A[i, t]

] ·∏
j �=i

Pr
[
A[j, t]

]
= p(1− p)n−1.

We now have a nice, closed-form expression for the probability that Pi
succeeds in accessing the database in round t; we can now ask how to set p
so that this success probability is maximized. Observe first that the success
probability is 0 for the extreme cases p= 0 and p= 1 (these correspond to the
extreme case in which processes never bother attempting, and the opposite
extreme case in which every process tries accessing the database in every
round, so that everyone is locked out). The function f (p) = p(1− p)n−1 is
positive for values of p strictly between 0 and 1, and its derivative f ′(p)=
(1− p)n−1− (n − 1)p(1− p)n−2 has a single zero at the value p= 1/n, where
the maximum is achieved. Thus we can maximize the success probability by
setting p= 1/n. (Notice that p= 1/n is a natural intuitive choice as well, if one
wants exactly one process to attempt an access in any round.)
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When we set p= 1/n, we get Pr
[
S[i, t]

]= 1
n

(
1− 1

n

)n−1
. It’s worth getting

a sense for the asymptotic value of this expression, with the help of the
following extremely useful fact from basic calculus.

(13.1)

(a) The function
(
1− 1

n

)n
converges monotonically from 1

4 up to 1
e as n

increases from 2.

(b) The function
(
1− 1

n

)n−1
converges monotonically from 1

2 down to 1
e as n

increases from 2.

Using (13.1), we see that 1/(en) ≤ Pr
[
S[i, t]

] ≤ 1/(2n), and hence
Pr
[
S[i, t]

]
is asymptotically equal to �(1/n).

Waiting for a Particular Process to Succeed Let’s consider this protocol with
the optimal value p= 1/n for the access probability. Suppose we are interested
in how long it will take process Pi to succeed in accessing the database at least
once. We see from the earlier calculation that the probability of its succeeding
in any one round is not very good, if n is reasonably large. How about if we
consider multiple rounds?

Let F[i, t] denote the “failure event” that process Pi does not succeed
in any of the rounds 1 through t. This is clearly just the intersection of
the complementary events S[i, r] for r = 1, 2, . . . , t. Moreover, since each of
these events is independent, we can compute the probability of F[i, t] by
multiplication:

Pr
[
F[i, t]

]= Pr

[
t⋂

r=1

S[i, r]

]
=

t∏
r=1

Pr
[
S[i, r]

]
=
[

1− 1
n

(
1− 1

n

)n−1
]t

.

This calculation does give us the value of the probability; but at this point,
we’re in danger of ending up with some extremely complicated-looking ex-
pressions, and so it’s important to start thinking asymptotically. Recall that
the probability of success was �(1/n) after one round; specifically, it was
bounded between 1/(en) and 1/(2n). Using the expression above, we have

Pr
[
F[i, t]

]= t∏
r=1

Pr
[
S[i, r]

]
≤
(

1− 1
en

)t

.

Now we notice that if we set t = en, then we have an expression that can be
plugged directly into (13.1). Of course en will not be an integer; so we can
take t = �en� and write

Pr
[
F[i, t]

]≤ (
1− 1

en

)�en�
≤
(

1− 1
en

)en

≤ 1
e

.
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This is a very compact and useful asymptotic statement: The probability
that process Pi does not succeed in any of rounds 1 through �en� is upper-
bounded by the constant e−1, independent of n. Now, if we increase t by some
fairly small factors, the probability that Pi does not succeed in any of rounds
1 through t drops precipitously: If we set t = �en� · (c ln n), then we have

Pr
[
F[i, t]

]≤ (
1− 1

en

)t

=
((

1− 1
en

)�en�)c ln n

≤ e−c ln n = n−c.

So, asymptotically, we can view things as follows. After �(n) rounds,
the probability that Pi has not yet succeeded is bounded by a constant; and
between then and �(n ln n), this probability drops to a quantity that is quite
small, bounded by an inverse polynomial in n.

Waiting for All Processes to Get Through Finally, we’re in a position to ask
the question that was implicit in the overall setup: How many rounds must
elapse before there’s a high probability that all processes will have succeeded
in accessing the database at least once?

To address this, we say that the protocol fails after t rounds if some process
has not yet succeeded in accessing the database. Let Ft denote the event that
the protocol fails after t rounds; the goal is to find a reasonably small value of
t for which Pr

[
Ft
]

is small.

The event Ft occurs if and only if one of the events F[i, t] occurs; so we
can write

Ft =
n⋃

i=1

F[i, t].

Previously, we considered intersections of independent events, which were
very simple to work with; here, by contrast, we have a union of events that are
not independent. Probabilities of unions like this can be very hard to compute
exactly, and in many settings it is enough to analyze them using a simple Union
Bound, which says that the probability of a union of events is upper-bounded
by the sum of their individual probabilities:

(13.2) (The Union Bound) Given events E1, E2, . . . , En, we have

Pr

[
n⋃

i=1

Ei

]
≤

n∑
i=1

Pr
[
Ei
]

.

Note that this is not an equality; but the upper bound is good enough
when, as here, the union on the left-hand side represents a “bad event” that
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we’re trying to avoid, and we want a bound on its probability in terms of
constituent “bad events” on the right-hand side.

For the case at hand, recall that Ft =
⋃n

i=1 F[i, t], and so

Pr
[
Ft
]≤ n∑

i=1

Pr
[
F[i, t]

]
.

The expression on the right-hand side is a sum of n terms, each with the same
value; so to make the probability of Ft small, we need to make each of the
terms on the right significantly smaller than 1/n. From our earlier discussion,
we see that choosing t =�(n) will not be good enough, since then each term
on the right is only bounded by a constant. If we choose t = �en� · (c ln n),
then we have Pr

[
F[i, t]

] ≤ n−c for each i, which is what we want. Thus, in
particular, taking t = 2�en� ln n gives us

Pr
[
Ft
]≤ n∑

i=1

Pr
[
F[i, t]

]≤ n · n−2= n−1,

and so we have shown the following.

(13.3) With probability at least 1− n−1, all processes succeed in accessing
the database at least once within t = 2�en� ln n rounds.

An interesting observation here is that if we had chosen a value of t equal
to qn ln n for a very small value of q (rather than the coefficient 2e that we
actually used), then we would have gotten an upper bound for Pr

[
F[i, t]

]
that

was larger than n−1, and hence a corresponding upper bound for the overall
failure probability Pr

[
Ft
]

that was larger than 1—in other words, a completely
worthless bound. Yet, as we saw, by choosing larger and larger values for
the coefficient q, we can drive the upper bound on Pr

[
Ft
]

down to n−c for
any constant c we want; and this is really a very tiny upper bound. So, in a
sense, all the “action” in the Union Bound takes place rapidly in the period
when t =�(n ln n); as we vary the hidden constant inside the �(·), the Union
Bound goes from providing no information to giving an extremely strong upper
bound on the probability.

We can ask whether this is simply an artifact of using the Union Bound
for our upper bound, or whether it’s intrinsic to the process we’re observing.
Although we won’t do the (somewhat messy) calculations here, one can show
that when t is a small constant times n ln n, there really is a sizable probability
that some process has not yet succeeded in accessing the database. So a
rapid falling-off in the value of Pr

[
Ft
]

genuinely does happen over the range
t =�(n ln n). For this problem, as in many problems of this flavor, we’re
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really identifying the asymptotically “correct” value of t despite our use of the
seemingly weak Union Bound.

13.2 Finding the Global Minimum Cut
Randomization naturally suggested itself in the previous example, since we
were assuming a model with many processes that could not directly commu-
nicate. We now look at a problem on graphs for which a randomized approach
comes as somewhat more of a surprise, since it is a problem for which perfectly
reasonable deterministic algorithms exist as well.

The Problem
Given an undirected graph G = (V , E), we define a cut of G to be a partition
of V into two non-empty sets A and B. Earlier, when we looked at network
flows, we worked with the closely related definition of an s-t cut: there, given
a directed graph G = (V , E) with distinguished source and sink nodes s and t,
an s-t cut was defined to be a partition of V into sets A and B such that s ∈ A
and t ∈ B. Our definition now is slightly different, since the underlying graph
is now undirected and there is no source or sink.

For a cut (A, B) in an undirected graph G, the size of (A, B) is the number of
edges with one end in A and the other in B. A global minimum cut (or “global
min-cut” for short) is a cut of minimum size. The term global here is meant
to connote that any cut of the graph is allowed; there is no source or sink.
Thus the global min-cut is a natural “robustness” parameter; it is the smallest
number of edges whose deletion disconnects the graph. We first check that
network flow techniques are indeed sufficient to find a global min-cut.

(13.4) There is a polynomial-time algorithm to find a global min-cut in an
undirected graph G.

Proof. We start from the similarity between cuts in undirected graphs and s-t
cuts in directed graphs, and with the fact that we know how to find the latter
optimally.

So given an undirected graph G = (V , E), we need to transform it so that
there are directed edges and there is a source and sink. We first replace every
undirected edge e = (u, v) ∈ E with two oppositely oriented directed edges,
e′ = (u, v) and e′′ = (v, u), each of capacity 1. Let G′ denote the resulting
directed graph.

Now suppose we pick two arbitrary nodes s, t ∈ V, and find the minimum
s-t cut in G′. It is easy to check that if (A, B) is this minimum cut in G′, then
(A, B) is also a cut of minimum size in G among all those that separate s from
t. But we know that the global min-cut in G must separate s from something,


