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1. Does every DAG have a topological order?
Lemma1. A DAG ! has a node with no entering edges.

Proof (of corollary) given Lemma1. [by induction]
• Base case: true if " = 1.
• Given DAG on " > 1 nodes, find a node & with no entering edges [Lemma1]
• ! − {&} is a DAG, since deleting & cannot create cycles. 
• By inductive hypothesis, ! − {&} has a topological ordering.
• Place & first; then append nodes of ! − & in topological order.  [valid because 
& has no entering edges]

Corollary. If ! is a DAG, then ! has a topological order.

&

DAG



Topological sorting algorithm

Theorem. TopSort computs a topological order in !(# +%) time
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TopSort(')
// ()*#+(,) = remaining number of incoming edges
// . = set of remaining nodes with no incoming edges
// V[1,…,n] topological order
1. Initialize . and ()*#+(⋅) for all nodes
2. For 0 ∈ S

Append v to V
For all , with 0 → , // delete v from G

()*#+ , − −
If ()*#+ , == 0, add , to .

! 1 per edge

!(# +%) a single 
scan of adjacency list



!

Completing the argument
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Lemma1. A DAG " has a node with no entering edges.

Proof. [by contradiction]
• Suppose " is a DAG, and every node has at least one entering edge. 
• Pick any node #, and follow edges backward from #. Repeat till we visit a node, 

say $ twice. (# ← & ← '⋯ ← $⋯ ← $)
• Let ! be the sequence of nodes between successive visits to w.
à ! is a cycle! Contradiction!

&'$ # ⋯⋯



Shortest path in a graph

§ Input: graph !, nodes " and #. 
§Output: $%"#(", #)
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BFS solves it!= 3

= 2

• Every edge has a length /0
• Length of a path / 1 = ∑0∈4 /0
• Distance $%"# 5, 6 = 7%84::↝< /(1)

Weighted graphs

∀> ∈ ?, /0= 1
Length function /: ? → ℤ
• / 5, 6 = ∞ if not an edge
• Model time, distance, cost … 
• Can be negative, e.g., fund transfer, 

heat in chemistry reaction … 

How to solve weighted case? 



// Initialize all ! ⋅ = ∞
1. ! ' = 0
2. For ) ∈ +\{)} in topological order

! ) = min
2,4 ∈5

{! 6 + 8(6, ))}

Shortest path in DAGs

§ Input: DAG ;, length 8, nodes ' and <
§Output: ! < ≔ !>'<(', <)
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!>'< 1 → 7

)A )B)C)D )E )F)G
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1

= 5
1 → 4 → 5 → 6 → 7

! 7 = min{! 6 + 3, ! 5 + 1}
! 6 = min{! 5 − 3, ! 2 + 5}§Key observations 

• Reduce to subproblems ! 6 , ! 5 ,…
• Subproblems overlap: e.g. both !(6), !(5)

involve !(2)
• An ordering of subproblems (DAG: edges 

go left to right)

! 5 = min{! 4 + 2, ! 3 + 2, ! 2 + 6}
! 4 = min{! 3 + 7, ! 1 + 3}
! 3 =! 2 − 1
! 2 = ∞
! 1 = 0



Algorithm design arsenal

§Divide-&-Conquer. Break up a problem into independent
(typically significantly smaller) subproblems; combine solutions to 
subproblems to form solution to original problem. 
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§Dynamic Programming. Break up a problem into a series of 
overlapping subproblems; combine solutions to smaller 
subproblems to form solution to large subproblem.

An implicit DAG: nodes=subproblems, edges = dependencies



Longest increasing subsequences

§ Input: a sequence of numbers !", … , !%
§Output: a longest increasing subsequence !&', … , !&(
• !&' < !&* < ⋯ < !&( (1 ≤ /", … , /0 ≤ 1)
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§Brute-force algorithm
• For each 1 ≤ 3 ≤ 1, check if exists an increasing subsequence of length 3
• Ω(2%) … 

5 2 8 6 3 6 9 7



DP for longest increasing subsequences

§ Input: a sequence of numbers !", … , !%
§Output: a longest increasing subsequence !&', … , !&(
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Form a DAG ): if !& ≤ !+, add an edge , → .

Increasing subsequence ⇔ path in )
èReduced to finding a longest path in the DAG!

2 638 6 9 7!"(= 5)



Longest increasing subsequences/longest path

§ Input: a sequence of numbers !", … , !%
§Output: a longest increasing subsequence !&', … , !&(
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Recap on DP

There is an ordering on the 
subproblems, and a relation 
showing how to solve a 
subproblem given answers to 
“smaller” subproblems (i.e., those 
appear earlier in the ordering)

// Initialize all ) * = 1; length of 
longest path ending at j
1. For * = 1,2, … , .

)(*) = 1 +max{) 6 : 6, * ∈ 9}
2. Return maxB )(*)

§ Running time: C . +D = C(.E)
• What is the worst case? 

§Can you output the subsequence? 



Dynamic Programming history

§ Richard Bellman
• DP [1953]
• B-Ford alg. for general shortest 

path (stay tuned!),
• Curse of dimensionality…
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§ Etymology
• Dynamic programming = planning over time
• Secretary of Defense was hostile to mathematical research
• Bellman sought an impressive name to avoid confrontation

"it's impossible to use dynamic in a pejorative sense" 
"something not even a Congressman could object to”
Reference: Bellman, R. E. Eye of the Hurricane,  An Autobiography. 



Dynamic Programming applications

§Areas
• Computer science: theory, graphics, AI, compilers, systems, …
• Bioinformatics 
• Operations research, information theory, control theory
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§ Some famous DP algorithms
• Avidan–Shamir for seam carving
• Unix diff for comparing two files
• Viterbi for hidden Markov models
• Knuth–Plass for word wrapping text in TeX. 
• Cocke–Kasami–Younger for parsing context-free grammars

Indispensable technique for optimization problems
Many solutions, each has a value
Goal: a solution w. optimal (min or max) value


