F, 09/20/19

----------------------------------------------------

Fall’19 CSCE 629 Lecture 9

AnaIYSiS Of e Topological sort cont’'d
. ~ +» Dynamic programming
Algorithms

____________________________________________________

----------------------------------------------------

Fang Song
Texas A&M U

____________________________________________________

Credit: based on slides by K.Wayne



1. Does every DAG have a topological order?
Lemmal. A DAG G has a node with no entering edges.

Corollary. If G is a DAG, then G has a topological order.

Proof (of corollary) given Lemma. [by induction]
* Base case: true if n = 1.

Given DAG on n > 1 nodes, find a node v with no entering edges [Lemma1]

(- — {v} is a DAG, since deleting v cannot create cycles.

By inductive hypothesis, ¢ — {v} has a topological ordering.

Place v first; then append nodes of G — {1} in topological order. [valid because

v has no entering edges]
!/ DAG



Topological sorting algorithm

TopSort(G)
// Count(w) = remaining number of incoming edges

// S = set of remaining nodes with no incoming edges
// V[1,...,n] topological order O(n + m) a single

. ° ° . é . .
1. Initialize S and Count(-) for all nodes e adjacency list
2. Forv €S

AppendvtoV

For all w with v - w // delete v from G N
Count(w) — — 0(1) per edge
If Count(w) ==0,addwto S P

Theorem. TopSort computs a topological order in O(n + m) time



Completing the argument

Lemmatl. A DAG G has a node with no entering edges.

Proof. [by contradiction]
* Suppose G is a DAG, and every node has at least one entering edge.

* Pick any node v, and follow edges backward from v. Repeat till we visit a node,
say W twice. (V « U « X - « W <« W)

* Let C be the sequence of nodes between successive visits to w.
=> C is a cycle! Contradiction!

D - —O—@D)—) -~ —O



Shortest path in a graph

= Input: graph G, nodes s and t. Weighted graphs

.OUtPUtdlSt(S't) * Every edge has a length [,

@ * Length of a path [(P) = Y. .cp e
@ ©) | * Distance dist(u,v) = min [(P)

® 00 € /VeEE,le=1

(& / Length function I: E - Z
BES solves it! * [(u,v) = 0 if not an edge
| * Model time, distance, cost ...

* Can be negative, e.g., fund transfer,
heat in chemistry reaction ...

How to solve weighted case?

4



Shortest path in DAGs

= Input: DAG G, length [, nodes s and t diitﬂ: ? :65 i

= Output: d(t) = dist(s,t) >

// Initialize all d(-) = o

1. d(s) =0

2. For v € V\{v} in topological order
d(v) = : lgl]l)relE{d(u) + [(u, v)}

» Key observations

 Reduce to subproblems d(6),d(5), ...
* Subproblems overlap: e.g. both d(6),d(5)

d(7) = min{d(6) + 3,d(5) + 1}
d(6) = min{d(5) — 3,d(2) + 5}
d(5) = min{d(4) + 2,d(3) + 2,d(2) + 6}

involve d(2) Zg% :;Elzr;{i(f) +7,d(1) +3}
* An ordering of subproblems (DAG: edges d(2) = oo

left to right
go left to right) A=




Algorithm design arsenal

= Dynamic Programming. Break up a problem into a series of
overlapping subproblems; combine solutions to smaller
subproblems to form solution to large subproblem.

An implicit DAG: nodes=subproblems, edges = dependencies

=" Divide-&-Conquer. Break up a problem into independent
(typically significantly smaller) subproblems; combine solutions to
subproblems to form solution to original problem.



Longest increasing subsequences

" Input: a sequence of numbers ay, ..., a,

= Output: a longest increasing subsequence q; , ..., a;
ca; <ap, <-<ay, (1=<i.., I <n)

k

= Brute-force algorithm

* For each 1 < k < n, check if exists an increasing subsequence of length k
« Q(2M) ...



DP for longest increasing subsequences

" Input: a sequence of numbers a4, ..., a,

= Output: a longest increasing subsequence a; , ..., a;
Form a DAG G: if a; < a;, add an edge i — j

k

_____________________________________________________________________________________________________________________________________________________________

Increasing subsequence & path in G
=»Reduced to finding a longest path in the DAG!



Longest increasing subsequences/longest path

" Input: a sequence of numbers a4, ..., a,

= Output: a longest increasing subsequence q; , ..., a;,

// Initialize all L(j) = 1; length of Recap on DP
longest 'pa,th ending at j There is an ordering on the
1. Forj=12,..,n subproblems, and a relation
L(j) =1+ max{L(i):(i,j) € E} showing how to solve a
2. Return max L(j) subproblem given answers to
J “smaller” subproblems (i.e., those
» Running time: 0(n + m) = 0(7’12) appear earlier in the ordering)

* What is the worst case!

= Can you output the subsequence?



Dynamic Programming history

= Richard Bellman
« DP [1953]

* B-Ford alg. for general shortest
path (stay tuned!),

* Curse of dimensionality...

THE THEORY OF DYNAMIC PROGRAMMING
RICHARD BELLMAN

1. Introduction. Before turning to a discussion of some representa-
tive problems which will permit us to exhibit various mathematical
features of the theory, let us present a brief survey of the funda-
mental concepts, hopes, and aspirations of dynamic programming.

To begin with, the theory was created to treat the mathematical
problems arising from the study of various multi-stage decision
processes, which may roughly be described in the following way: We
have a physical system whose state at any time £ is determined by a
7 set of quantities which we call state parameters, or state variables.

* Etymology
* Dynamic programming = planning over time
* Secretary of Defense was hostile to mathematical research
* Bellman sought an impressive name to avoid confrontation

"it's impossible to use dynamic in a pejorative sense"
"something not even a Congressman could object to”
Reference: Bellman, R. E. Eye of the Hurricane, An Autobiography.

10



Dynamic Programming applications

Indispensable technique for problems
Many solutions, each has a value
= Areas Goal: a solution w. optimal (min or max) value

* Computer science: theory, graphics,Al, compilers, systems, ...
* Bioinformatics
* Operations research, information theory, control theory

= Some famous DP algorithms
* Avidan—Shamir for seam carving
* Unix diff for comparing two files
* Viterbi for hidden Markov models
* Knuth—Plass for word wrapping text in TeX.
* Cocke—Kasami—Younger for parsing context-free grammars

11



