
Fang Song
Texas A&M U

Fall’19 CSCE 629

Analysis of
Algorithms

F, 09/20/19

Lecture 9

Fang Song
Texas A&M U

• Topological sort cont’d
• Dynamic programming

Credit: based on slides by K. Wayne

1

1. Does every DAG have a topological order?
Lemma1. A DAG ! has a node with no entering edges.

Proof (of corollary) given Lemma1. [by induction]
• Base case: true if " = 1.
• Given DAG on " > 1 nodes, find a node & with no entering edges [Lemma1]
• ! − {&} is a DAG, since deleting & cannot create cycles.
• By inductive hypothesis, ! − {&} has a topological ordering.
• Place & first; then append nodes of ! − & in topological order. [valid because
& has no entering edges]

Corollary. If ! is a DAG, then ! has a topological order.

&

DAG

Topological sorting algorithm

Theorem. TopSort computs a topological order in !(# +%) time

2

TopSort(')
// ()*#+(,) = remaining number of incoming edges
// . = set of remaining nodes with no incoming edges
// V[1,…,n] topological order
1. Initialize . and ()*#+(⋅) for all nodes
2. For 0 ∈ S

Append v to V
For all , with 0 → , // delete v from G

()*#+ , − −
If ()*#+ , == 0, add , to .

! 1 per edge

!(# +%) a single
scan of adjacency list

!

Completing the argument

3

Lemma1. A DAG " has a node with no entering edges.

Proof. [by contradiction]
• Suppose " is a DAG, and every node has at least one entering edge.
• Pick any node #, and follow edges backward from #. Repeat till we visit a node,

say $ twice. (# ← & ← '⋯ ← $⋯ ← $)
• Let ! be the sequence of nodes between successive visits to w.
à ! is a cycle! Contradiction!

&'$ # ⋯⋯

Shortest path in a graph

§ Input: graph !, nodes " and #.
§Output: $%"#(", #)

4

1
2 3

7

854

6

1
2 4

5
6

3 7
$%"# 1 → 6

1
2 3

7 854

6
$%"# 1,6

1

2 54

3 67

BFS solves it!= 3

= 2

• Every edge has a length /0
• Length of a path / 1 = ∑0∈4 /0
• Distance $%"# 5, 6 = 7%84::↝< /(1)

Weighted graphs

∀> ∈ ?, /0= 1
Length function /: ? → ℤ
• / 5, 6 = ∞ if not an edge
• Model time, distance, cost …
• Can be negative, e.g., fund transfer,

heat in chemistry reaction …

How to solve weighted case?

// Initialize all ! ⋅ = ∞
1. ! ' = 0
2. For) ∈ +\{)} in topological order

!) = min
2,4 ∈5

{! 6 + 8(6,))}

Shortest path in DAGs

§ Input: DAG ;, length 8, nodes ' and <
§Output: ! < ≔ !>'<(', <)

5

!>'< 1 → 7

)A)B)C)D)E)F)G

5

−3 3

3 6

6
2

27−1

1

= 5
1 → 4 → 5 → 6 → 7

! 7 = min{! 6 + 3, ! 5 + 1}
! 6 = min{! 5 − 3, ! 2 + 5}§Key observations

• Reduce to subproblems ! 6 , ! 5 ,…
• Subproblems overlap: e.g. both !(6), !(5)

involve !(2)
• An ordering of subproblems (DAG: edges

go left to right)

! 5 = min{! 4 + 2, ! 3 + 2, ! 2 + 6}
! 4 = min{! 3 + 7, ! 1 + 3}
! 3 =! 2 − 1
! 2 = ∞
! 1 = 0

Algorithm design arsenal

§Divide-&-Conquer. Break up a problem into independent
(typically significantly smaller) subproblems; combine solutions to
subproblems to form solution to original problem.

6

§Dynamic Programming. Break up a problem into a series of
overlapping subproblems; combine solutions to smaller
subproblems to form solution to large subproblem.

An implicit DAG: nodes=subproblems, edges = dependencies

Longest increasing subsequences

§ Input: a sequence of numbers !", … , !%
§Output: a longest increasing subsequence !&', … , !&(
• !&' < !&* < ⋯ < !&((1 ≤ /", … , /0 ≤ 1)

7

§Brute-force algorithm
• For each 1 ≤ 3 ≤ 1, check if exists an increasing subsequence of length 3
• Ω(2%) …

5 2 8 6 3 6 9 7

DP for longest increasing subsequences

§ Input: a sequence of numbers !", … , !%
§Output: a longest increasing subsequence !&', … , !&(

8

Form a DAG): if !& ≤ !+, add an edge , → .

Increasing subsequence ⇔ path in)
èReduced to finding a longest path in the DAG!

2 638 6 9 7!"(= 5)

Longest increasing subsequences/longest path

§ Input: a sequence of numbers !", … , !%
§Output: a longest increasing subsequence !&', … , !&(

9

Recap on DP

There is an ordering on the
subproblems, and a relation
showing how to solve a
subproblem given answers to
“smaller” subproblems (i.e., those
appear earlier in the ordering)

// Initialize all) * = 1; length of
longest path ending at j
1. For * = 1,2, … , .

)(*) = 1 +max{) 6 : 6, * ∈ 9}
2. Return maxB)(*)

§ Running time: C . +D = C(.E)
• What is the worst case?

§Can you output the subsequence?

Dynamic Programming history

§ Richard Bellman
• DP [1953]
• B-Ford alg. for general shortest

path (stay tuned!),
• Curse of dimensionality…

10

§ Etymology
• Dynamic programming = planning over time
• Secretary of Defense was hostile to mathematical research
• Bellman sought an impressive name to avoid confrontation

"it's impossible to use dynamic in a pejorative sense"
"something not even a Congressman could object to”
Reference: Bellman, R. E. Eye of the Hurricane, An Autobiography.

Dynamic Programming applications

§Areas
• Computer science: theory, graphics, AI, compilers, systems, …
• Bioinformatics
• Operations research, information theory, control theory

11

§ Some famous DP algorithms
• Avidan–Shamir for seam carving
• Unix diff for comparing two files
• Viterbi for hidden Markov models
• Knuth–Plass for word wrapping text in TeX.
• Cocke–Kasami–Younger for parsing context-free grammars

Indispensable technique for optimization problems
Many solutions, each has a value
Goal: a solution w. optimal (min or max) value

