Fall'19 CSCE 629

Analysis of Algorithms

Fang Song
Texas A&M U

Lecture 8

- Connectivity in directed graph
- Topological sort

Credit: based on slides by A. Smith & K. Wayne

Directed graphs

- $\blacksquare G = (V, E)$
 - Edge $u \rightarrow v$ leaves node u and enters node v
 - Adjacency matrix (asymmetric)
 - Adjacency list: track out-going edges (or two for in and out)

Some examples

...
$$Adj_{out}[2] = \{3\}, Adj_{in}[2] = \{1,4\}$$

Directed graph	Node	Directed edge
transportation	Street intersection	One-way street
web	webpage	hyperlink
scheduling	task	prereq
cell phone	person	call
citation	article	Citation

Connectivity in directed graphs

- Directed reachability. Find all nodes reachable from a node s.
 - BFS/DFS applies naturally
 - $s \sim t$: there is a path from s to t. Need not be $t \sim s$

- Application: web crawler.
 - Start from web page s. Find all web pages linked from s, either directly or indirectly.

Strong connectivity

- Def. u and v are mutually reachable ($u \leftrightarrow v$) if $u \sim v \& v \sim u$.
- Def. A graph is strongly connected if every pair of nodes is mutually reachable.

Lemma. Let s be any node. G is strongly connected iff. every node is reachable from s, and s is reachable from every node.

Proof. [Show both "if" and "only if"]

- ⇒ (only if) Follows from definition of "strongly connected".
- \Leftarrow (if) for any two nodes u, v:
 - $u \sim v$ by following $u \sim s$ then $s \sim v$
 - $v \sim u$ by following $v \sim s$ then $s \sim u$

Testing strong connectivity

Theorem. There is an O(m + n) time algorithm that determines if G is strongly connected.

Proof (construction of an algorithm; fill in the analysis on your own)

- 1. Pick any node s
- 2. Run **BFS** from s on G
- 3. Run **BFS** from s on G^{rev}
- 4. Return true if all nodes reached in both **BFS** runs

G : reverse orientation of every edge in G

Strong components

- Def. A strong component is a maximal subset of mutually reachable nodes.
- Obs. For any two nodes s and t in a directed graph, their strong components are either identical or disjoint.

Theorem. There is an O(m+n) time algorithm that finds all strong components.

SIAM J. COMPUT.

Vol. 1, No. 2, June 1972

DEPTH-FIRST SEARCH AND LINEAR GRAPH ALGORITHMS*

ROBERT TARJAN†

Abstract. The value of depth-first search or "backtracking" as a technique for solving problems is illustrated by two examples. An improved version of an algorithm for finding the strongly connected components of a directed graph and an algorithm for finding the biconnected components of an undirect graph are presented. The space and time requirements of both algorithms are bounded by

Directed acyclic graphs (DAG)

Def. A DAG is a directed graph that contains no directed cycles.

- Application: precedence constrains.
 - Course prerequisite: course *i* must be taken before *j*
 - Compilation: module i must be compiled before j
 - Pipelein of computing jobs: output of job i determins input of job j

Topological order

• Def. A topological order of a directed graph is an ordering of its nodes as $v_1, ..., v_n$, so that for every edge $v_i \rightarrow v_j$ we have i < j.

A topological order

- 1. Does every DAG have a topological order?
- 2. If G has a topological order, is G necessarily a DAG?

2. If G has a topological order, is G necessarily a DAG?

Lemma 2. If G has a topological order, then G is a DAG.

Proof. [by contradiction]

- Suppose G has a topological order v_1, \dots, v_n ; and G also has a directed cycle C.
- Let v_i be the lowest-indexed node in C, v_j be the node right before v_i (in C); thus $v_i \rightarrow v_i$ is an edge.
- By our choice i < j.
- But $v_1, ..., v_n$ a topological order; if $v_j \rightarrow v_i$ an edge, then j < i. Contradiction!

1. Does every DAG have a topological order?

Lemma1. A DAG G has a node with no entering edges.

Corollary. If G is a DAG, then G has a topological order.

Proof (of corollary) given Lemma1. [by induction]

- Base case: true if n=1.
- Given DAG on n > 1 nodes, find a node v with no entering edges [Lemma1]
- $G \{v\}$ is a DAG, since deleting v cannot create cycles.
- By inductive hypothesis, $G \{v\}$ has a topological ordering.
- Place v first; then append nodes of $G \{v\}$ in topological order. [valid because v has no entering edges]

DAG

Topological sorting algorithm

```
TopSort(G)
// Count(w) = remaining number of incoming edges
//S = set of remaining nodes with no incoming edges
// V[1,...,n] topological order
// V[1,...,n] topological order

1. Initialize S and Count(\cdot) for all nodes \longrightarrow O(n+m) a single scan of adjacency list
2. For v \in S
       Append v to V
       For all w with v \rightarrow w // delete v from G
           Count(w) - -
                                                           0(1) per edge
           If Count(w) == 0, add w to S
```

Theorem. TopSort computs a topological order in O(n + m) time

Completing the argument

Lemma1. A DAG G has a node with no entering edges.

Proof. [by contradiction]

- Suppose G is a DAG, and every node has at least one entering edge.
- Pick any node v, and follow edges backward from v. Repeat till we visit a node, say w twice. $(v \leftarrow u \leftarrow x \cdots \leftarrow w \cdots \leftarrow w)$
- Let C be the sequence of nodes between successive visits to w.
- \rightarrow C is a cycle! Contradiction!

