
Fang Song
Texas A&M U

Fall’19 CSCE 629

Analysis of
Algorithms

W, 09/18/19

Lecture 8

Fang Song
Texas A&M U

• Connectivity in directed graph
• Topological sort

Credit: based on slides by A. Smith & K. Wayne

Directed graphs

§! = ($, &)
• Edge (→ * leaves node (and enters node *
• Adjacency matrix (asymmetric)
• Adjacency list: track out-going edges (or two for in and out)

1

1

2 4

5

6

3 7

!

Directed graph Node Directed edge
transportation Street intersection One-way street

web webpage hyperlink

scheduling task prereq

cell phone person call

citation article Citation

§ Some examples … ,-./01 2 = 3 , ,-.45 2 = {1,4}

Connectivity in directed graphs

§Directed reachability. Find all nodes reachable from a node s.
• BFS/DFS applies naturally
• ! ↝ #: there is a path from s to t. Need not be # ↝ !

2

§Application: web crawler.
• Start from web page !. Find all web pages linked from s,

either directly or indirectly.

1

2 4
5

6

3 7

$ 1

2 54

%&' 1

2 54

3 6

1

2
⋯

)&'
1

2 54

3 6

Strong connectivity

§Def. ! and " are mutually reachable (! ↭ ") if ! ↝ " & " ↝ !.

3

§Def. A graph is strongly connected if every pair of nodes is
mutually reachable.
Lemma. Let % be any node. & is strongly connected iff. every
node is reachable from %, and % is reachable from every node.

§Obs. If ! ↭ " and " ↭ ', then ! ↭ '.

Proof. [Show both “if” and “only if”]
• ⇒ (only if) Follows from definition of “strongly connected”.
• ⇐ (if) for any two nodes !, ":

! ↝ " by following ! ↝ % then % ↝ "
" ↝ ! by following " ↝ % then % ↝ !

%

!

"

Testing strong connectivity

Proof (construction of an algorithm; fill in the analysis on your own)

4

Theorem. There is an !(# + %) time algorithm that determines if '
is strongly connected.

1. Pick any node s
2. Run BFS from s on '
3. Run BFS from s on ()*+
4. Return true if all nodes

reached in both BFS runs

Strongly connected

1
2 4

3

',-. : reverse orientation
of every edge in '

'
1

2 4

3

Strong components

§Def. A strong component is a maximal
subset of mutually reachable nodes.

5

Theorem. There is an !(# + %) time algorithm that finds all strong
components.

§Obs. For any two nodes ' and (in a directed
graph, their strong components are either
identical or disjoint.

Directed acyclic graphs (DAG)

§Def. A DAG is a directed graph that contains no directed cycles.

6

§Application: precedence constrains.
• Course prerequisite: course ! must be taken before "
• Compilation: module ! must be compiled before "
• Pipelein of computing jobs: output of job ! determins input of job "

Topological order

7

§Def. A topological order of a directed graph is an ordering of its
nodes as !", … , !%, so that for every edge !& → !(we have) < +.

1
2 4

5
6

3 7

!,
!- !.

!/
!0

!1 !"

!, !-!.!/ !0 !1!"

A topological order

all edges go
from left to right

8

1. Does every DAG have a topological order?

2. If ! has a topological order, is ! necessarily a DAG?

9

2. If ! has a topological order, is ! necessarily a DAG?

Lemma2. If " has a topological order, then " is a DAG.

Proof. [by contradiction]
• Suppose " has a topological order #$,… , #'; and " also has a directed cycle (.
• Let #) be the lowest-indexed node in (, #* be the node right before #) (in ();

thus #* → #) is an edge.
• By our choice , < ..
• But #$,… , #' a topological order; if #* → #) an edge, then . < ,. Contradiction!

#) #* #'#$
Directed cycle (

10

1. Does every DAG have a topological order?
Lemma1. A DAG ! has a node with no entering edges.

Proof (of corollary) given Lemma1. [by induction]
• Base case: true if " = 1.
• Given DAG on " > 1 nodes, find a node & with no entering edges [Lemma1]
• ! − {&} is a DAG, since deleting & cannot create cycles.
• By inductive hypothesis, ! − {&} has a topological ordering.
• Place & first; then append nodes of ! − & in topological order. [valid because
& has no entering edges]

Corollary. If ! is a DAG, then ! has a topological order.

&

DAG

Topological sorting algorithm

Theorem. TopSort computs a topological order in !(# +%) time

11

TopSort(')
// ()*#+(,) = remaining number of incoming edges
// . = set of remaining nodes with no incoming edges
// V[1,…,n] topological order
1. Initialize . and ()*#+(⋅) for all nodes
2. For 0 ∈ S

Append v to V
For all , with 0 → , // delete v from G

()*#+ , − −
If ()*#+ , == 0, add , to .

! 1 per edge

!(# +%) a single
scan of adjacency list

!

Completing the argument

12

Lemma1. A DAG " has a node with no entering edges.

Proof. [by contradiction]
• Suppose " is a DAG, and every node has at least one entering edge.
• Pick any node #, and follow edges backward from #. Repeat till we visit a node,

say $ twice. (# ← & ← '⋯ ← $⋯ ← $)
• Let ! be the sequence of nodes between successive visits to w.
à ! is a cycle! Contradiction!

&'$ # ⋯⋯

