W, 09/18/19

----------------------------------------------------

Fall’19 CSCE 629 Lecture 8

Analysis Of « Connectivity in directed graph
. -+ Topological sort
Algorithms

____________________________________________________

----------------------------------------------------

Fang Song
Texas A&M U

____________________________________________________

Credit: based on slides by A. Smith & K.WWayne



Directed graphs

«G = (V,E)
* Edge u — v leaves node u and enters node v
* Adjacency matrix (asymmetric)

* Adjacency list: track out-going edges (or two for in and out)
» Some examples o Adjoue[2] =13} Adjin[2] = {1,4}

Directed graph Directed edge

transportation  Street intersection One-way street

web webpage hyperlink
scheduling task prereq
cell phone person call

citation article Citation



Connectivity in directed graphs

= Directed reachability. Find all nodes reachable from a node s.
* BFS/DFS applies naturally
* s~ t:thereis a path fromstot. Need notbe t ~» s

= Application: web crawler.

* Start from web page s. Find all web pages linked from s,
either directly or indirectly.



Strong connectivity

» Def. u and v are mutually reachable (u ¢w v)if u ~» v & v ~» w.
* Obs. If u «» v and v «» w, then u «» w.

= Def. A graph is strongly connected if every pair of nodes is
mutually reachable.

Lemma. Let s be any node. G is strongly connected iff. every
node is reachable from s, and s is reachable from every node.

Proof. [Show both “if” and “only if"]

* = (only if) Follows from definition of “strongly connected”.
* & (if) for any two nodes u, v:

u ~ v by following u ~ s then s ~» v

v ~» u by following v ~» s then s ~ u




Testing strong connectivity

Theorem. There is an O(m + n) time algorithm that determines if G
is strongly connected.

Proof (construction of an algorithm; fill in the analysis on your own)

Pick any node s

Run BF'S from son G

Run BF'S from s on G"¢V
Return true if all nodes
reached in both BF'S runs

_________________________________________________________________________________________________________________________________________

B 0120 -




Strong components

= Def. A strong component is a maximal 0
subset of mutually reachable nodes. G © (6=(8)

= Obs. For any two nodes s and t in a directed @-
graph, their strong components are either 0

identical or disjoint.

Theorem. There is an O(m + n) time algorithm that finds all strong
components. s s o

Vol. 1, No. 2, June 1972

DEPTH-FIRST SEARCH AND LINEAR GRAPH ALGORITHMS*

ROBERT TARJANf

Abstract. The value of depth-first search or “backtracking” as a technique for solving problems is
illustrated by two examples. An improved version of an algorithm for finding the strongly connected
components of a directed graph and an algorithm for finding the biconnected components of an un-
direct graph are presented. The space and time requirements of both algorithms are bounded by



Directed acyclic graphs (DAG)

= Def. A DAG is a directed graph that contains no directed cycles.

» Application: precedence constrains.
* Course prerequisite: course I must be taken before j
* Compilation: module i must be compiled before j
* Pipelein of computing jobs: output of job i determins input of job j



Topological order

= Def. A topological order of a directed graph is an ordering of its

nodes as vy, ..., v, so that for every edge v; — v; we have i < J.

oot
9‘0
all edges go
) D from left to right
w
@?@? L o N

A topological order



1. Does every DAG have a topological order?

2. If G has a topological order, is G necessarily a DAG?



2. If G has a topological order, is G necessarily a DAG?

LemmaZ2. If G has a topological order, then G is a DAG.

Proof. [by contradiction]
* Suppose G has a topological order vy, ..., v,;and G also has a directed cycle C.

* Let v; be the lowest-indexed node in C, v; be the node right before v; (in C);
thus v; — v; is an edge.

* By our choice i <.
* But vy, ..., v, a topological order;if v; = v; an edge, then j < i. Contradiction!

Directed cycle C




1. Does every DAG have a topological order?
Lemmal. A DAG G has a node with no entering edges.

Corollary. If G is a DAG, then G has a topological order.

Proof (of corollary) given Lemma. [by induction]
* Base case: true if n = 1.

Given DAG on n > 1 nodes, find a node v with no entering edges [Lemma1]

(- — {v} is a DAG, since deleting v cannot create cycles.

By inductive hypothesis, ¢ — {v} has a topological ordering.

Place v first; then append nodes of G — {1} in topological order. [valid because

v has no entering edges]
!/ DAG

10



Topological sorting algorithm

TopSort(G)
// Count(w) = remaining number of incoming edges

// S = set of remaining nodes with no incoming edges
// V[1,...,n] topological order O(n + m) a single

. ° ° . é . .
1. Initialize S and Count(-) for all nodes e adjacency list
2. Forv €S

AppendvtoV

For all w with v - w // delete v from G N
Count(w) — — 0(1) per edge
If Count(w) ==0,addwto S P

Theorem. TopSort computs a topological order in O(n + m) time

11



Completing the argument

Lemmatl. A DAG G has a node with no entering edges.

Proof. [by contradiction]
* Suppose G is a DAG, and every node has at least one entering edge.

* Pick any node v, and follow edges backward from v. Repeat till we visit a node,
say W twice. (V « U « X - « W <« W)

* Let C be the sequence of nodes between successive visits to w.
=> C is a cycle! Contradiction!

D - —O—@D)—) -~ —O

12



