M, 09/16/19

Fall'19 CSCE 629

Analysis of Algorithms

Fang Song Texas A&M U

Lecture 7

- Graph representations
- BFS/DFS implementations
- Connected component

Credit: based on slides by A. Smith & K. Wayne

Constructing DFS tree

DFS Recap

• Running time: linear O(|V| + |E|) (more to come)

Let T be a DFS tree of G, and let u & v be nodes in T. Let (u, v) be an edge of G that is not an edge of T. Then one of u or v is an ancestor of the other.

Generic traversal algorithm

1. $R = \{s\}$ 2. While there is an edge (u, v) where $u \in R$ and $v \notin R$, add v to R.

- To implement it, need to choose
- Graph representation
- Data structures to track...
 - Vertices already explored
 - Edge to be followed next

These choices affect the order of traversal

Implementing (B/D)FS

G = (V, E), |V| = n, |E| = m

• Adjacency matrix A: n-by-n. $A_{uv} = 1$ iff. (u, v) is an edge

Graph representation 1: adjacency matrix

- Lookup an edge: $\Theta(1)$ time
- List all neighbors: $\Theta(n)$
- Symmetric (undirected graph)
- Space: $\Theta(n^2)$, good for dense graphs

G = (V, E), |V| = n, |E| = m

• Adjacency list. $\forall u \in V, Adj[u] = \{v: v \text{ adjacent to } u\}$

- Lookup an edge (u, v): $\Theta(\deg(u))$ time
- Space: $\Theta(n + m)$, good for sparse graphs

How many entries in the lists?

$$\sum_{u} \deg(u) = 2m$$

$$Adj[1] = \{2,3\}$$

$$Adj[2] = \{1,3,4,5\}$$

$$Adj[3] = \{1,2,5,7,8\}$$

$$\vdots$$

$$Adj[8] = \{3,7\}$$

Two options for maintaining a set of elements

1. Queue: first-in first out (FIFO) 2. Stack: last-in first out (LIFO)

Review: queue & stack

Input: G = (V, E) by adjacency list Adj. Start node s. Output: BFS tree T (rooted at s). Initialized to empty.

BFS implementation

BFS(*s*): // Discovered[1,...,n]: array of bits (explored or not) – initialized to all zeros. // Queue $Q \leftarrow \emptyset$

- 1. Set Discovered[s] = 1
- 2. EnQ(s) // add s to Q
- 3. While Q not empty, DeQ(u)For each (u, v) incident to uIf Discovered[v] = 0 then Set Discovered[v] = 1Add edge (u, v) to TEnQ(v)

Theorem. **BFS** takes O(m + n) time (linear in input size).

Exercise. How to build DFS tree T along the way?

B/DFS actually tells more than s-t conectivity... Connected component of G containing s:

all nodes reachable from s

Claim. For any two nodes s and t, their connected components are either identical or disjoint.

Connected components

10

In-class discussion

- How to find all connected components?
- How fast?
- Why care?

- $\sum_i O(n_i + m_i) = O(m + n)$
- Basic topology about G

The set of all connected components

