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• Graph representations
• BFS/DFS implementations
• Connected component

Credit: based on slides by A. Smith & K. Wayne



DFS Recap

§Constructing DFS tree
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§ Running time: linear !(|$| + |&|) (more to come)
§ Let ( be a DFS tree of ), and let + & - be nodes in (. Let (+, -) be 

an edge of ) that is not an edge of (. Then one of + or - is an 
ancestor of the other. 
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Contrast with 
BFS tree

X



Implementing (B/D)FS

To implement it, need to choose
§Graph representation 
§Data structures to track… 
• Vertices already explored
• Edge to be followed next 
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Generic traversal algorithm
1. # = {&}
2. While there is an edge (), +) where ) ∈ # and 

+ ∉ #, add + to #.

These choices affect 
the order of traversal



Graph representation 1: adjacency matrix

! = #, % , # = &, % = '
§Adjacency matrix (: &−by−&. (,- = 1 iff. (0, 1) is an edge 
• Lookup an edge: Θ(1) time
• List all neighbors: Θ(&)
• Symmetric (undirected graph)
• Space: Θ &4 , good for dense graphs
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1 2 3 4 5 6 7 8A
1 
2
3
4
5
6
7
8

0 1 1 0 0 0 0 0 
1 0 1 1 1 0 0 0 
1 1 0 0 1 0 1 1 
0 1 0 0 1 0 0 0 
0 1 1 1 0 1 0 0 
0 0 0 0 1 0 0 0 
0 0 1 0 0 0 0 1 
0 0 1 0 0 0 1 0 



Graph representation 2: adjacency lists
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! = #, % , # = &, % = '
§Adjacency list. ∀) ∈ #, +,- ) = {/: / adjacent to )}
• Lookup an edge (), /): Θ(deg())) time
• Space: Θ & +' , good for sparse graphs
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+,- 1 = {2,3}

+,- 2 = {1,3,4,5}

+,- 3 = {1,2,5,7,8}

+,- 8 = {3,7}
⋮

How many entries in the lists?
∑Hdeg ) = 2'



Review: queue & stack
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Two options for maintaining a set of elements 

1. Queue: first-in first out (FIFO) 2. Stack: last-in first out (LIFO)

In: EnQ Out: DeQ

In: Push Out: Pop



BFS implementation
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§ Input: ! = #, % by adjacency list &'(. Start node ).
§Output: BFS tree * (rooted at )). Initialized to empty.

BFS()): //	Discovered[1,…,n]:	array of bits 
(explored or not) – initialized to all zeros.
// Queue < ← ∅
1. Set Discovered[s] = 1
2. EnQ(s) // add s to Q
3. While < not empty, DeQ(E)

For each (E, F) incident to E
If Discovered F = 0 then

Set Discovered F = 1
Add edge (E, F) to *
EnQ(v) 

F E
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BFS running time
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BFS(!): //	Discovered[1,…,n]:	array of bits 
(explored or not) – initialized to all zeros.
// Queue 4 ← ∅
1. Set Discovered[s] = 1
2. EnQ(s) // add s to Q
3. While 4 not empty, DeQ(>)

For each (>, ?) incident to >
If Discovered ? = 0 then

Set Discovered ? = 1
Add edge (>, ?) to A
EnQ(v) 

B 1 , run once for all

B 1 , run ≤ twice per edge

B(1), run once per vertex

Theorem. BFS takes B(D + F) time (linear in input size). 



DFS implementation
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DFS(!): //	Discovered[1,…,n]
// Stack 3 ← ∅
1. Set Discovered[s] = 1
2. Push(s) // add s to S
3. While 3 not empty, Pop(?)

If  Discovered ? = 0 then
Set Discovered ? = 1
For each (?, A) incident to ?

Push(v) 

A ?Push Pop

Theorem. DFS takes B(C + E) time (linear in input size). 

Exercise. How to build DFS tree F along the way? 

BFS(!): 
…

3. While G not empty, DeQ(?)
For each (?, A) incident to ?

If Discovered A = 0 then
Set Discovered A = 1
Add edge (?, A) to F
EnQ(v) 

A ?



Connected components

§B/DFS actually tells more than !−# conectivity…  
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Connected component of $ containing !:
all nodes reachable from !
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§Claim. For any two nodes ! and #, their connected components 
are either identical or disjoint. 



The set of all connected components
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§ In-class discussion
• How to find all connected components?
• How fast?
• Why care? 

• Iterate over ), run B/DFS
• ∑+ , -+ + /+ = ,(/ + -)
• Basic topology about !


