
Fang Song
Texas A&M U

Fall’19 CSCE 629

Analysis of
Algorithms

M, 09/16/19

Lecture 7

Fang Song
Texas A&M U

• Graph representations
• BFS/DFS implementations
• Connected component

Credit: based on slides by A. Smith & K. Wayne

DFS Recap

§Constructing DFS tree

1

1
2 3

7

854

6

§ Running time: linear !(|$| + |&|) (more to come)
§ Let (be a DFS tree of), and let + & - be nodes in (. Let (+, -) be

an edge of) that is not an edge of (. Then one of + or - is an
ancestor of the other.

1

2

3

7

8

5

4 6
X

1
2 3

7 854

6

Contrast with
BFS tree

X

Implementing (B/D)FS

To implement it, need to choose
§Graph representation
§Data structures to track…
• Vertices already explored
• Edge to be followed next

2

Generic traversal algorithm
1. # = {&}
2. While there is an edge (), +) where) ∈ # and

+ ∉ #, add + to #.

These choices affect
the order of traversal

Graph representation 1: adjacency matrix

! = #, % , # = &, % = '
§Adjacency matrix (: &−by−&. (,- = 1 iff. (0, 1) is an edge
• Lookup an edge: Θ(1) time
• List all neighbors: Θ(&)
• Symmetric (undirected graph)
• Space: Θ &4 , good for dense graphs

3

1
2 3

7

854

6

1 2 3 4 5 6 7 8A
1
2
3
4
5
6
7
8

0 1 1 0 0 0 0 0
1 0 1 1 1 0 0 0
1 1 0 0 1 0 1 1
0 1 0 0 1 0 0 0
0 1 1 1 0 1 0 0
0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 1
0 0 1 0 0 0 1 0

Graph representation 2: adjacency lists

4

! = #, % , # = &, % = '
§Adjacency list. ∀) ∈ #, +,-) = {/: / adjacent to)}
• Lookup an edge (), /): Θ(deg())) time
• Space: Θ & +' , good for sparse graphs

1
2 3

7

854

6

+,- 1 = {2,3}

+,- 2 = {1,3,4,5}

+,- 3 = {1,2,5,7,8}

+,- 8 = {3,7}
⋮

How many entries in the lists?
∑Hdeg) = 2'

Review: queue & stack

5

Two options for maintaining a set of elements

1. Queue: first-in first out (FIFO) 2. Stack: last-in first out (LIFO)

In: EnQ Out: DeQ

In: Push Out: Pop

BFS implementation

6

§ Input: ! = #, % by adjacency list &'(. Start node).
§Output: BFS tree * (rooted at)). Initialized to empty.

BFS()): //	Discovered[1,…,n]:	array of bits
(explored or not) – initialized to all zeros.
// Queue < ← ∅
1. Set Discovered[s] = 1
2. EnQ(s) // add s to Q
3. While < not empty, DeQ(E)

For each (E, F) incident to E
If Discovered F = 0 then

Set Discovered F = 1
Add edge (E, F) to *
EnQ(v)

F E

HIHIJK

1

2 3

7 854

6

BFS running time

7

BFS(!): //	Discovered[1,…,n]:	array of bits
(explored or not) – initialized to all zeros.
// Queue 4 ← ∅
1. Set Discovered[s] = 1
2. EnQ(s) // add s to Q
3. While 4 not empty, DeQ(>)

For each (>, ?) incident to >
If Discovered ? = 0 then

Set Discovered ? = 1
Add edge (>, ?) to A
EnQ(v)

B 1 , run once for all

B 1 , run ≤ twice per edge

B(1), run once per vertex

Theorem. BFS takes B(D + F) time (linear in input size).

DFS implementation

8

DFS(!): //	Discovered[1,…,n]
// Stack 3 ← ∅
1. Set Discovered[s] = 1
2. Push(s) // add s to S
3. While 3 not empty, Pop(?)

If Discovered ? = 0 then
Set Discovered ? = 1
For each (?, A) incident to ?

Push(v)

A ?Push Pop

Theorem. DFS takes B(C + E) time (linear in input size).

Exercise. How to build DFS tree F along the way?

BFS(!):
…

3. While G not empty, DeQ(?)
For each (?, A) incident to ?

If Discovered A = 0 then
Set Discovered A = 1
Add edge (?, A) to F
EnQ(v)

A ?

Connected components

§B/DFS actually tells more than !−# conectivity…

9

Connected component of $ containing !:
all nodes reachable from !

1

2 3

7

854

6

9

$ 1

2 3

54

6

%&'(1)

7

98

%&'(7)

§Claim. For any two nodes ! and #, their connected components
are either identical or disjoint.

The set of all connected components

10

1
2 3

7

854

6

9

! 1
2 3

54

6

"#$(1)

7

98

"#$(7)

§ In-class discussion
• How to find all connected components?
• How fast?
• Why care?

• Iterate over), run B/DFS
• ∑+ , -+ + /+ = ,(/ + -)
• Basic topology about !

