F09/13/19

--

Fall’19 CSCE 629 Lecture 6

AnaIYSiS Of * Graph: terminology review

X -+ Traversal
~ Algorithms = - &rs

--

Fang Song
Texas A&M U

__

Credit: some based on slides by A. Smith & K.VWayne

Graph ¢ = (V,E)

Graph glossary

Vertex/node, edge

Undirected graph e = (u, v)

Directed graph e:u > v

u adjacent to v, neighbors

Degree d(u)

Path, cycle

u, v connected

G connected: iff. u, v connected for any pair © and v

Warmup puzzles

= Suppose an undirected graph G is connected
* True/False? G has at least n — 1 edges

= Suppose undirected G has exactly n — 1 edges (no self loops)

* True/False? GG is connected
* What if in addition G has NO cycles?

Trees

= Definition. An undirected graph is a tree if it is connected and
does not contain a cycle.

= Theorem. Let G be an undirected graph on n nodes. Any two of
the following statements imply the third.
* (7 is connected.

* (G does not contain a cycle.
* G has n - 1 edges.

Rooted trees

Given atree T, choose a root node r
and orient each edge away from .

Importance. Models hierarchical structure.

rootr

parent of v

Exploring a graph

Connectivity problem:
Given vertices s,t € V, is there a path from s to t?

» Breadth-first search (BFS)

* Explore children in order of distance to start node

» Depth-first search (DFS)

* Recursively explore vertex’s children before exploring siblings

Breath-first search

Intuition. Explore outward from s in all possible directions, adding
nodes one "layer” at a time.

B Lo = {s}
—] y L, = {neighbors of L}

—_—
S—_ L — L — e Lp

A . L, = {neighbors of L; notin Ly & L4}

Wave front
of a ripple

Observations of BFS

* Running time: linear O(|V| + |E|) (more to come)

* For each i, L; consists of all nodes at distance exactly i from s.
There is a path from s to t iff. t appears in some layer.

"|Let T be a BFS tree of G = (V,E), and let (u,v) be an edge of G.
Then, the levels of u and v differ by at most 1.

Depth-first search

Intuition. prior to

DF'S(s):
// R will consist of nodes to which s has a path
Mark s as “Explored” and add s to R
for each edge (s,v) incident to s
if v is not marked “Explored” then
Recursively invoke DFS(v)

|||_|_|_I

-

=

T

An “impatient”
maze runner

I ==

I

A “patient”
maze runner

DFS in action

» Constructing DFS tree (on board)

Contrast with
BFS tree

* Running time: linear O(|V| + |E|) (more to come)

» et T be a DFS tree of G, and let u & v be nodes in T. Let (u, v) be
an edge of G that is not an edge of T. Then one of u or v is an
ancestor of the other.

A lookahead

= Representation of graphs
* Adjacency list vs. adjacency matrix

» BFS/DFS: some implementation details
= Connectivity in directed graphs

10

