
Fang Song
Texas A&M U

Fall’19 CSCE 629

Analysis of
Algorithms

W, 09/04/19

Lecture 4

Fang Song
Texas A&M U

• Exponentiation
• Solving recurrences
• Recursion tree
• Master theorem

Logistics

§Announcements
• HW2 out, due 10am Friday 09/13.
• Monday: recitation by TA on asymptotics, recurrence, loop invariants; 1-3pm

additional office hours by TA HRBB 526
• Wednesday: guest lecture by Prof. Andreas Klappenecker

1

Review: Divide-&-Conquer

1. Divide
• Divide the given instance of the problem into several

independent smaller instances of the same problem.

2. Delegate
• Solve smaller instances recursively, i.e., delegate each smaller

instance to the Recursion Fairy.

3. Combine
• Combine solutions of smaller instance into the final solution

for the given instance.

2

Exponentiation

§Naïve algorithm: Θ " = Θ(2&)
• Exponential in the input length!

3

§ Input: integers (, "; " is ,-bit long
§Output: - = (.

How many multiplications?

§Divide-and-Conquer
• Linear in the input length!

/ " = / "/2 + O 1 = 4 log " = 4(,)

(. = 8 (./9 ⋅ (./9, if " even
((.?@)/9 ⋅ ((.?@)/9 ⋅ (, if " odd

1 subproblem
instead of 2 or more

Recurrence

§ Recurrences we have seen
• Merge sort: ! " = 2! "/2 + ' " = '("log")
• Divide-&-Conquer multiplication: ! " = 4! "/2 + O " = ' "/
• Karatsuba’s integer multiplication: ! " = 3! "/2 + O " ≈ '("2.45)
• Block-wise matrix multiplication: ! " = 8! "/2 + O "/ = '("7)
• Strassen’s matrix multiplication: ! " = 7! "/2 + O "/ ≈ '("/.92)
• Exponentiation: ! : = ! :/2 + O 1 = ' log : = '(")

4

§ Recurrence:
• Def. an equation or inequality that

describes a function in terms of its
value on smaller inputs.

• Sloppiness: ignore floor/ceilings;
implicit ! 1 = '(1).

! " = < ' 1 => " = 1
! ⌊"/2⌋ + ! "/2 + ' " => " > 1

Method #1: Recursion Tree

1. Form recursion tree to guess a solution
• Draw tree of recursive calls
• Each node gets assigned the work done during that call to the procedure

(dividing and combining)
• Total work is sum of work at all nodes

2. Prove it by induction

5

Recursion tree for Mergesort

6

! " = 2! "/2 + " Ignore floor/ceil & constant factor in merging time '(")

!(")
!(*+) !(*+)

leaves = 2- = "

!(*.) !(*.)!(*.) !(*.)

!(1) ……
!("/21)

ℎ = log "

1 Write out tree of recursive calls

Recursion tree for Mergesort

7

! " = 2! "/2 + " Ignore floor/ceil & constant factor in merging time '(")

2 Assign work at each level
"

"/4 "/4"/4 "/4

leaves = "

"/2 "/2

1 ……
!("/2.)

ℎ = log "

(dividing and combining)

Recursion tree for Mergesort

8

! " = 2! "/2 + " Ignore floor/ceil & constant factor in merging time '(")

3 Total work = sum of all nodes
"

"/2 "/2

"/4 "/4"/4 "/4

1 …… # leaves = "
!("/2.)

…
…

ℎ = log "

"

"
"

"
Total: ! " = '("log ")

Method #2: Master theorem

§A ”cookbook” for solving recurrences of the form

9

! " = $! "/& + ((")

• $ ≥ 1, & > 1
• (asymptotically positive, i.e., (" > 0 for all " > "0

1 2 (" vs. "3456 7

1 8(29:;< =) (" = > "3456 7?@ for some G > 0

2 8(29:;< =9:; H) (" = > "3456 7

3 8(I(2))
(" = Ω "3456 7K@ for some G > 0
& (("/&) ≤ M((") for some M < 1

§ 3 typical cases depending on (" vs. "3456 7

2. Grow at
similar rate

1. ((") grows
polynomially slower
by an "@ factor

3. ((") grows poly
faster + regularity
condition

Master theorem in use

10

1 !(#$%&' () * + = - +./01 234 for some ; > 0
2 !(#$%&' (log #) * + = - +./01 2

3 !(@(#)) * + = Ω +./01 2B4 for some ; > 0
& *(+/D) ≤ F *(+) for some F < 1

§ In-class exercise: solve these by master theorem
1. Merge sort: I + = 2I +/2 + - +
2. Divide-&-Conquer multiplication: I + = 4I +/2 + O +
3. Karatsuba’s integer multiplication: I + = 3I +/2 + O +
4. Block-wise matrix multiplication: I + = 8I +/2 + O +P
5. Strassen’s matrix multiplication: I + = 7I +/2 + O +P
6. Exponentiation: I D = I D/2 + O 1
7. I + = 4I +/2 + O +S

Master theorem in use

11

1 !(#$%&' () * + = - +./01 234 for some ; > 0
2 !(#$%&' ($%& #) * + = - +./01 2

3 !(>(#)) * + = Ω +./01 2@4 for some ; > 0
& *(+/B) ≤ D *(+) for some D < 1

§ Ex1. G + = 2G +/2 + - + [Mergesort]
• J = 2, B = 2, +./01 2 = + = * +
• Case 2 ⇒ G(+) = -(+log +)

Master theorem in use

12

§ Ex3. ! " = 3! "/2 + O " [Karatsuba’s integer mult.]
•) = 3, + = 2, ",-./ 0 = ",-. 1 ≈ "3.56, 7 " = " = 8 "3.569: for > = .5
• Case 1 ⇒ !(") = 8(",-. 1)

1 D(EFGHI J) 7 " = 8 ",-./ 09: for some > > 0

2 D(EFGHI JFGH E) 7 " = 8 ",-./ 0

3 D(P(E)) 7 " = Ω ",-./ 0R: for some > > 0
& 7("/+) ≤ T 7(") for some T < 1

§ Ex2. ! " = 4! "/2 + O " [Divide-&-Conquer mult.]
•) = 4, + = 2, ",-./ 0 = "W, 7 " = " = 8("W9:) (pick > = 1)
• Case 1 ⇒ !(") = 8("W)

Master theorem in use

13

§ Ex4. : ! " = 8! "/2 + O ") [Block-wise matrix mult.]
• * = 8, , = 2, "-./0 1 = "-./2 3 = "4, 5 " = ") = 6("489) for ; = 1

• Case 1 ⇒ ! " = 6 "-./ 3 = 6("4)

1 >(?@ABC D) 5 " = 6 "-./0 189 for some ; > 0

2 >(?@ABC D@AB ?) 5 " = 6 "-./0 1

3 >(M(?)) 5 " = Ω "-./0 1O9 for some ; > 0
& 5("/,) ≤ Q 5(") for some Q < 1

§ Ex5. ! " = 7! "/2 + O ") [Strassen’s matrix mult.]
• * = 7, , = 2, "-./0 1 = "-./2 T ≈ ").3W, 5 " = ") = 6(").3W89) for ; = .8

• Case 1 ⇒ ! " = 6 "-./ T ≈ 6(").3W)

Master theorem in use

14

§ Ex6. ! " = ! "/2 + O 1 [Exponentiation]
•) = 1, + = 2, ",-./ 0 = "1 = 1, 2 " = O(1)
• Case 2 ⇒ ! " = 6 "1 log " = 6(log ")

§ Ex7. ! " = 4! "/2 + O ";
•) = 4, + = 2, ",-./ 0 = "<, 2 " = "; = Ω("<>?) for @ = 1
• Case 3 ⇒ ! " = Θ ";
• Don’t forget to check the regularity condition: "/2 ; ≤ D "; for D = .5 < 1

1 J(KLMNO P) 2 " = 6 ",-./ 0Q? for some @ > 0
2 J(KLMNO PLMN K) 2 " = 6 ",-./ 0

3 J(W(K)) 2 " = Ω ",-./ 0>? for some @ > 0
& 2("/+) ≤ D 2(") for some D < 1

Master theorem in use

15

§ Ex8. ! " = 4! "/2 + "(/ log "
• , = 4, . = 2, "/012 3 = "(, 4 " = "(/ log "
• Master theorem doesn’t apply! For any constant 5 > 0, "8 = 9(log ")

§Generalization exists
• Ex. Akra–Bazzi method

https://en.wikipedia.org/wiki/Akra%E2%80%93Bazzi_method

1 <(=>?@A B) 4 " = C "/012 3D8 for some 5 > 0

2 <(=>?@A B>?@ =) 4 " = C "/012 3

3 <(J(=)) 4 " = Ω "/012 3L8 for some 5 > 0
4("/.) ≤ N 4(") for some N < 1

https://en.wikipedia.org/wiki/Akra%E2%80%93Bazzi_method

Master theorem: proof idea

16

!(#)

!(#/&) !(#/&)

!(#/&') !(#/&')

((1)

!(#/&)

…
…

!(#/&') …

…
ℎ = log0 #

width (# leaves) =
67 = 689:; < = #89:; =

6

6 branches !(#)

6!(#/&)

6'!(#/&')

#89:; =

Let ! # = #>. 3 cases: ! # vs. #89:; = ⟺ @ vs. log0 6
(# = #> + 6 #/& > + 6' #/&' > +⋯= ∑D !(#) ⋅ 6/&>

D

Master theorem: proof idea

17

!(#)

!(#/&) !(#/&)

!(#/&') !(#/&')

((1)

!(#/&)

…
…

!(#/&') …

…
ℎ = log0 #

width (# leaves) =
67 = 689:; < = #89:; =

6

6 branches
!(#)

6!(#/&)

6'!(#/&')

#89:; =

Case 1 ! # = > #89:; =?@ , i.e.,B < log0 6,
=
0D
> 1:

weight increases geometrically from root to leaves.
Leaves dominate, (# = F(#GHI; =)

Master theorem: proof idea

18

!(#)

!(#/&) !(#/&)

!(#/&') !(#/&')

((1)

!(#/&)

…
…

!(#/&') …

…
ℎ = log0 #

width (# leaves) =
67 = 689:; < = #89:; =

6

6 branches !(#)

6!(#/&)

6'!(#/&')

#89:; =

Case 2 ! # = ? #89:; = , =0@ = 1: each level does

approx. the same work, (# = A(#BCD; = log #)

Master theorem: proof idea

19

!(#)

!(#/&) !(#/&)

!(#/&') !(#/&')

((1)

!(#/&)

…
…

!(#/&') …

…
ℎ = log0 #

width (# leaves) =
67 = 689:; < = #89:; =

6

6 branches !(#)

6!(#/&)

6'!(#/&')

#89:; =

Case 3 ! # = Ω #89:; =@A ,
=
0B < 1 : weight

decreases geometrically from root to leave.
Root dominates, (# = D(!(#))

