M, 11/25/19

--

Fall’'19 CSCE 629 Lecture 34

Ana|y5is Of Randomized algorithms
. ~+ Final review
Algorithms

__

--

Fang Song
Texas A&M U

__

Randomized quicksort

= Pick the pivot

Rand-QuickSort(A):
if (array A has zero or one element)
Return
Pick pivotp € A4
(L, M,R) « PARTITION — 3 — WAY(4,p) — ~ 0(n)

Rand-QuickSort(L) — T(1)
Rand-QuickSort(R) —— T(n—i—1)
Theorem. The number of compares to quicksort an array

of n distinct elements is O().

Probability 102

» Random variable X: Q - N

* Assign each outcome a number
« “X =x"istheevent E = {w € Q: X(w) = x}
* Independent random variables:

X, Y are indep. iff. for all possible x and y, events X = x and Y = y are indep.
= Expectation: a weighed average

C E[X] = S,er Pr(X = 2) - 2
* Linearity: E[X + Y] = E[X] + E[Y] (independence NOT needed)

= Ex. (0 = roll 4 dices independently
* Let X be the sum of 4 rolls; X; be value of ith roll,i =1, ..., 4

e E[X] =E[X;+ -+ X,] =4-E[X,] = 4x3.5 = 14

Randomized quicksort: analysis

Theorem. The expected number of compares to quicksort an array
of n distinct elements is O(n log n).

Assume A = {z1,2,, ...,2,}, 21, < 25 < -+ < Zy,
Observation: any pair z; & z; (i < j) is compared at most once

* How many comparisons? X := total number of comparisons

1,if z; is compared to z;
 |ndicator variable: Xl-j — { ‘ P)

0, otherwise

= E - E[Zn y = l+1X'j]
= Zn) 7 i+1 E[X;] Zn) }1 i+1 Pr‘[Xij =1}

Linearity

Randomized quicksort: analysis cont’d

Theorem. The expected number of compares to quicksort an array
of n distinct elements is O(n log n).

1,if z; is compared to z;
- n-—1 n _ — ! l J
IE[X] — Zi=1 j=i+1 Pr[Xij o 1] Aij '_{ 0, otherwise

= When two items are compared?

213465.9810

\)
|

No comparison across these two groups

= Observation: z; & z; compared iff. z; or z; was the first chosen as
d inOt from Zl] — {Zi'Zi+1' ...,Z'}

Randomized quicksort: analysis cont’d

= Observation: z; & z; compared iff. z; or z; was the first chosen as
d inOt from Zl] — {Zi'Zi+1' ...,Z'}

PI‘[Xij — 1]
= Pr|z; & z; compared| = Pr|[z; or z; is 1st pivot chosen from Z;]
= Pr|z; is 1st pivot from Z;;] + Pr|z; is 1st pivot from Z;;]
1 1 2
=— + = ——
j—i+1 j—i+1 j—-i+1

!

_ 2 _ y 7 _ 1
E[X] = Z?=11 ﬁi“ﬁ = Z?:f Yk=177=2" 2?:11 71}:1; = 0(n-logn)

LP relaxation for set cover

(Set cover ILP IT) Min Y% x; (Set cover LP X) Min Y./, x;
Subject to: - Subject to:
Dies, xi=1, VuelU Yiues X =1, VUEU
x; € {0,1}, Vi e {1,...,m} 0<x;<1,Vie{l,.. m}
® x; = |x]] @m Let x” bean optimal soln.for LP X

& optimal value OPT =); x;
= Randomized rounding: set x; = 1 with probability x;

E[X %] = 22, Elx] =270 %

= But is it fea5|b|e? [Further analysis on Panigrahi’s notes]

Theorem. There is a poly-time randomized algorithm achieving O (log n)
expected approximation ratio, except w. probability 0(1/n).

Final exam

* When & where
* December 10,2019, Tuesday 8 am - |10 am @ HRBB 113

» What

« Comprehensive, slightly more focused on 29 half

= How

* Similar format as mid-term: short-answer questions and algorithm designs
* Closed book

* 2 pages (letter-size) 2-sided cheat sheet permitted

* No credit for unintelligible hand writing

* More on practice exam

You've accomplished a lot!

Be proud of yourselves!

"o

Principal questions

What problem to solve?

be as precise as possible

s the algorithm correct?

How much resource it costs?

(time, space, ...)

Can we do better?

DESIGN

ANALYSIS

Major topics

= Basics: asymptotic, graphs (BFS/DFS), data structures <

» Algorithmic techniques
|. Divide-&-Conquer
2. Dynamic Programming
3. Greedy
4. Network flow & linear programming
5. Randomization 2nd half
* Reduction

= Computational intractability: P, NP, NPC, approximation<

1st half

P71

10

1. Divide-&-Conquer

" |dea
* Divide into independent subproblems — recurse - combine

= Examples
* Merge sort O(nlogn)
* Fast multiplication 0 (n1°%) [Karatsuba60]; O(nlogn) [HarveyHoeven|9]
* Matrix multiplication 0 (n?81) [strassen69]; O (n%378) [CoppersmithWinograd90];
* Exponentiation O(nlogn)
* Quick sort 0(n?) worst-case; Expected 0(nlogn) random pivoting

= Analysis.

* Solving recurrence:T(n) = aT(n/b) + f(n)
 Recursion tree & Master theorem

11

2. Dynamic programming

" |dea

* Divide into subproblems — recurse by

* Usually bottom-up iteration (topological order of implicit DAG)
= Examples

* Fibonacci

* Longest increasing subsequence

* Weighted interval scheduling

* Matrix-chain multiplication

* Longest common subsequence (aka Edit Distance)
* Shortest path (w. negative lengths)

O(mn) |

O(n)
0(n?)

O (nlogn)
0(n3)

0 (mn)

12

3. Greedy

" |dea
* Special case of DP: when lucky, lazy choice works

= Examples
* Shortest path (w. non-negative lengths) O((m+n)logn) |]
* Interval scheduling (weight = 1) O(nlogn)
* Interval partitioning O(nlogn)
* Minimum spanning tree O(mlogn) []; 0((m + n) logn) |]

0 credit in exam without correctness proofs

Detour

* data structures [Prioirity Queue, Union Find]
- analysis

13

4. Network flow - Linear programming

Network flow < Linear programming

= Analytical * Analytical
* Max-Flow = Min-Cut * Duality: OPT(Primal) = OPT(Dual)
= Algorithms = Algorithms
* Augmenting path: O (mnC) * Simplex [efficient in practice/ but not
[Ford-Fulkerson] poly-time worst-case]
e Capacity scaling: 0(m?log () * Ellipsoid [poly-time but not practical]
* In exam: quote O (mn) * Interior point [poly-time & practical]
= Applications = Warning: don't reduce to LP
* Bipartite perfect matching unless stated explicitly

14

5. Randomization

" |dea
* Make random choices to get correct answers with high probability in (expected)
poly-time
= Examples
* Contention resolution
* Randomized quicksort
* Randomized rounding for LP relaxation

" Important probabilistic tools
* Union bound
* Linearity of expectation
* Reducing errors (tail inequalities)

15

Computational intractability

= Classity problems by “hardness”
* P:feasible problems (solvable in poly-time) P vs NP?
* NP: 3 poly-time certifier verifying a solution

» Reduction: relating hardness (A < B= A no harder than B)
* Cook reduction [aka poly-time reduction]
* Karp reduction [aka poly-time transformation]

* NP-complete: 1) A e NP & 2) VB € NP, B <y,, p A |[aka NP-hard]
* Circuit—SAT is NPC [Cook-Levin]

* Circuit—SAT < 3—SAT < INDEPENDENT—SET < VERTEX—COVER <
SET—COVER < IntegerLP [Karp]

* 3—SAT < HAM—-CYCLE

16

Coping with NPC: approximation algorithms

* Greedy

* Vertex cover & set cover

= | P relaxation
rounding: 2-approx. vertex cover
rounding: O (log n)-approx. vertex cover

* Know the facts and ideas! Details less important

17

FAQs

= How can | come up with the ideas in 2hrs?
* Hints given sometimes, and/or subproblems to guide your way

* How should | study for it?

e Review the fundamentals
* Reproduce the algorithms & analysis for all problems you'’ve seen (lecs, text, hw...)
* Practice exam: emulate a real exam environment

= More?

18

