
Fall’19 CSCE 629

Analysis of
Algorithms

M, 11/25/19

Lecture 34

• Randomized algorithms
• Final review

Fang Song
Texas A&M U

Randomized quicksort

1

§ Pick the pivot randomly
Rand-QuickSort(A):
if (array A has zero or one element)

Return
Pick pivot 𝑝 ∈ 𝐴 uniformly at random
𝐿,𝑀, 𝑅 ← PARTITION − 3 −WAY 𝐴, 𝑝

Rand-QuickSort(L)
Rand-QuickSort(R)

𝑂(𝑛)
𝑇(𝑖)
𝑇(𝑛 − 𝑖 − 1)

Theorem. The expected number of compares to quicksort an array
of 𝑛 distinct elements is 𝑂(𝑛log 𝑛).

Probability 102

2

§ Random variable 𝑋:Ω → ℕ
• Assign each outcome a number
• “𝑋 = 𝑥” is the event 𝐸 ≔ {𝜔 ∈ Ω: 𝑋 𝜔 = 𝑥}
• Independent random variables:

§ Ex. Ω = roll 4 dices independently
• Let 𝑋 be the sum of 4 rolls; 𝑋K be value of 𝑖th roll, 𝑖 = 1,… , 4

§ Expectation: a weighed average
• 𝔼[𝑋] = ∑R∈S Pr 𝑋 = 𝑧 ⋅ 𝑧
• Linearity: 𝔼 𝑋 + 𝑌 = 𝔼 𝑋 + 𝔼[𝑌] (independence NOT needed)

• 𝔼 𝑋 = 𝔼 𝑋Y +⋯+ 𝑋[= 4 ⋅ 𝔼 𝑋Y = 4×3.5 = 14

𝑋, 𝑌 are indep. iff. for all possible 𝑥 and 𝑦, events 𝑋 = 𝑥 and 𝑌 = 𝑦 are indep.

Randomized quicksort: analysis

3

Theorem. The expected number of compares to quicksort an array
of 𝑛 distinct elements is 𝑂(𝑛 log 𝑛).

Assume 𝐴 = 𝑧Y, 𝑧_, … , 𝑧` , 𝑧Y, < 𝑧_ < ⋯ < 𝑧`

§How many comparisons? 𝑋 ≔ total number of comparisons

• Indicator variable: 𝑋Kb ≔ c
1, if 𝑧K is compared to 𝑧b

0, otherwise

Observation: any pair 𝑧K & 𝑧b (𝑖 < 𝑗) is compared at most once

⇒ 𝔼 𝑋 = 𝔼 ∑KsY`tY ∑bsKuY` 𝑋Kb
= ∑KsY`tY ∑bsKuY` 𝔼[𝑋Kb] = ∑KsY`tY ∑bsKuY` Pr[𝑋Kb = 1]

Linearity

Randomized quicksort: analysis cont’d

4

Theorem. The expected number of compares to quicksort an array
of 𝑛 distinct elements is 𝑂(𝑛 log 𝑛).

𝔼 𝑋 = ∑KsY`tY ∑bsKuY` Pr[𝑋Kb = 1] 𝑋Kb ≔ c
1, if 𝑧K is compared to 𝑧b

0, otherwise

§When two items are compared?

12 3 4 56
7

89 10

No comparison across these two groups

§Observation: 𝑧K & 𝑧b compared iff. 𝑧K or 𝑧b was the first chosen as
a pivot from 𝑍Kb = {𝑧K, 𝑧KuY, … , 𝑧b}

𝔼 𝑋 = ∑KsY`tY∑bsKuY` _
btKuY = ∑KsY`tY∑|sY`tK _

|uY ≤2 ⋅ ∑KsY
`tY∑|sY` Y

| = 𝑂 𝑛 ⋅ log 𝑛

Randomized quicksort: analysis cont’d

5

§Observation: 𝑧K & 𝑧b compared iff. 𝑧K or 𝑧b was the first chosen as
a pivot from 𝑍Kb = {𝑧K, 𝑧KuY, … , 𝑧b}

Pr[𝑋Kb = 1]
= Pr[𝑧K & 𝑧b compared] = Pr[𝑧K or 𝑧b is 1st pivot chosen from 𝑍Kb]
= Pr[𝑧K is 1st pivot from 𝑍Kb] + Pr[𝑧b is 1st pivot from 𝑍Kb]

=
1

𝑗 − 𝑖 + 1
+

1
𝑗 − 𝑖 + 1

=
2

𝑗 − 𝑖 + 1

Harmonic series

LP relaxation for set cover

6

(Set cover ILP Π) Min ∑KsY� 𝑥K
Subject to:

∑K:�∈�� 𝑥K ≥ 1, ∀𝑢 ∈ 𝑈
𝑥K ∈ 0,1 , ∀𝑖 ∈ {1,… ,𝑚}

(Set cover LP Σ) Min ∑KsY� 𝑥K
Subject to:

∑K:�∈�� 𝑥K ≥ 1, ∀𝑢 ∈ 𝑈
0 ≤ 𝑥K ≤ 1, ∀𝑖 ∈ {1,… ,𝑚}

Let 𝑥∗ be an optimal soln. for LP Σ
& optimal value OPT = ∑K 𝑥K∗

L 𝑥K ≔ ⌊𝑥K∗⌉

§ Randomized rounding: set 𝑥K = 1with probability 𝑥K∗

𝔼 ∑KsY� 𝑥K = ∑KsY� 𝔼[𝑥K] = ∑KsY� 𝑥K
∗

§But is it feasible? [Further analysis on Panigrahi’s notes]
Theorem. There is a poly-time randomized algorithm achieving 𝑂(log 𝑛)
expected approximation ratio, except w. probability 𝑂(1/𝑛).

Final exam

7

§When & where
• December 10, 2019, Tuesday 8 am - 10 am @ HRBB 113

§What
• Comprehensive, slightly more focused on 2nd half

§How
• Similar format as mid-term: short-answer questions and algorithm designs
• Closed book
• 2 pages (letter-size) 2-sided cheat sheet permitted
• No credit for unintelligible hand writing
• More on practice exam

8

You’ve accomplished a lot!

Be proud of yourselves!

Principal questions

9

0 What problem to solve?
be as precise as possible

ANALYSIS

DESIGN
1 Is the algorithm correct?

2 How much resource it costs?
(time, space, …)

3 Can we do better?

Major topics

§Basics: asymptotic, graphs (BFS/DFS), data structures
§Algorithmic techniques

1. Divide-&-Conquer
2. Dynamic Programming
3. Greedy
4. Network flow & linear programming
5. Randomization
⭑ Reduction

§Computational intractability: P, NP, NPC, approximation

10

1st half

2nd half

1. Divide-&-Conquer

§ Idea
• Divide into independent subproblems – recurse - combine

§ Examples
• Merge sort
• Fast multiplication
• Matrix multiplication
• Exponentiation
• Quick sort

§Analysis.
• Solving recurrence: 𝑇 𝑛 = 𝑎𝑇 𝑛/𝑏 + 𝑓(𝑛)
• Recursion tree & Master theorem

11

𝑂 𝑛 log 𝑛
𝑂(𝑛Y.��) [Karatsuba60]; 𝑂(𝑛 log 𝑛) [HarveyHoeven19]

𝑂 𝑛_ worst-case; Expected 𝑂 𝑛 log 𝑛 random pivoting

𝑂 𝑛_.�Y [Strassen69]; 𝑂 𝑛_.��� [CoppersmithWinograd90];
𝑂 𝑛 log 𝑛

2. Dynamic programming

§ Idea
• Divide into overlapping subproblems – smart recurse by memoization
• Usually bottom-up iteration (topological order of implicit DAG)

§ Examples
• Fibonacci
• Longest increasing subsequence
• Weighted interval scheduling
• Matrix-chain multiplication
• Longest common subsequence (aka Edit Distance)
• Shortest path (w. negative lengths)

12

𝑂(𝑛)
𝑂(𝑛_)

𝑂(𝑛 log 𝑛)
𝑂(𝑛�)
𝑂(𝑚𝑛)

𝑂(𝑚𝑛) [Bellman-Ford]

3. Greedy

§ Idea
• Special case of DP: when lucky, lazy choice works

§ Examples
• Shortest path (w. non-negative lengths)
• Interval scheduling (weight = 1)
• Interval partitioning
• Minimum spanning tree

§Warning! 0 credit in exam without correctness proofs

13

𝑂(𝑚 + 𝑛 log 𝑛) [Dijkstra]
𝑂(𝑛 log 𝑛)
𝑂(𝑛 log 𝑛)

𝑂(𝑚 log 𝑛) [Kruskal]; 𝑂(𝑚 + 𝑛 log 𝑛) [Prim]

Detour
• data structures [Prioirity Queue, Union Find]
• amortized analysis

4. Network flow - Linear programming

§Analytical
• Max-Flow ≡ Min-Cut

§Algorithms
• Augmenting path:𝑂(𝑚𝑛𝐶)

[Ford-Fulkerson]
• Capacity scaling:𝑂(𝑚_ log 𝐶)
• In exam: quote 𝑂(𝑚𝑛)

§Applications
• Bipartite perfect matching

14

§Analytical
• Duality: OPT(Primal) = OPT(Dual)

§Algorithms
• Simplex [efficient in practice/ but not

poly-time worst-case]
• Ellipsoid [poly-time but not practical]
• Interior point [poly-time & practical]

§Warning: don’t reduce to LP
unless stated explicitly

Network flow Linear programming≤

5. Randomization

§ Idea
• Make random choices to get correct answers with high probability in (expected)

poly-time

§ Examples
• Contention resolution
• Randomized quicksort
• Randomized rounding for LP relaxation

§ Important probabilistic tools
• Union bound
• Linearity of expectation
• Reducing errors (tail inequalities)

15

Computational intractability

§Classify problems by “hardness”
• 𝐏: feasible problems (solvable in poly-time)
• 𝐍𝐏:∃ poly-time certifier verifying a solution

§ Reduction: relating hardness (𝐴 ≤ 𝐵⇒ 𝐴 no harder than 𝐵)
• Cook reduction [aka poly-time reduction]
• Karp reduction [aka poly-time transformation]

§𝐍𝐏−𝐜𝐨𝐦𝐩𝐥𝐞𝐭𝐞: 1) 𝐴 ∈ 𝐍𝐏 & 2) ∀𝐵 ∈ 𝐍𝐏, 𝐵 ≤¦§¨©,ª 𝐴 [𝑎𝑘𝑎 𝐍𝐏-hard]
• Circuit−SAT is NPC [Cook-Levin]
• Circuit−SAT ≤ 3−SAT ≤ INDEPENDENT−SET ≤ VERTEX−COVER ≤
SET−COVER ≤ IntegerLP [Karp]
• 3−SAT ≤ HAM−CYCLE

16

𝐏 𝐯𝐬. 𝐍𝐏?

Coping with NPC: approximation algorithms

§Greedy
• Vertex cover & set cover

§ LP relaxation
• Threshold rounding: 2-approx. vertex cover
• Randomized rounding: 𝑂(log 𝑛)-approx. vertex cover

⭑ Know the facts and ideas! Details less important

17

FAQs

§How can I come up with the ideas in 2hrs?
• Hints given sometimes, and/or subproblems to guide your way

§How should I study for it?
• Review the fundamentals
• Reproduce the algorithms & analysis for all problems you’ve seen (lecs, text, hw…)
• Practice exam: emulate a real exam environment

§More?

18

