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Coping with NP-Completeness

https://i.stack.imgur.com/EkpIV.jpg

§Better (constructive) answers: 
sacrifice one of three desired features

1. Solve arbitrary instances
2. Solve problems in poly-time
3. Solve problems to optimality

§ Techniques
• Identifying structured special cases
• Local search heuristics (e.g., gradient descent)
• Approximation algorithms



Finding near-optimal vertex cover

Input. Graph 𝐺 = (𝑉, 𝐸)
• Vertex cover 𝑆 ⊆ 𝑉: subset of vertices that touches all edges

Goal. Find a vertex cover 𝑆 of minimum size
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§ First attempt: greedily pick the vertex that covers most edges
APP-VC: on input 𝐺 = 𝑉, 𝐸
For 𝑣 ∈ 𝑉 (in descending order of degrees)

Add 𝑣 in	S	
Delete 𝑣 and its neighbors from 𝐺

§Claim. Suppose the minimum vertex cover has size OPT. Then the 
output of APP-VC has size at most O(log 𝑛 ⋅ OPT)

§ Pf. Exercise (Hint on board)



2-approximation vertex cover
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§ 2nd attempt: find a MAX matching
2-APP-VC: on input 𝐺 = 𝑉, 𝐸
Find a maximal matching 𝑀 ⊆ 𝐸
Return 𝑆 = {all end points of edges in 𝑀}

§Claim. The output of 2-APP-VC has size at most 2 ⋅ OPT
§ Pf. 𝑆 = 2 𝑀 ≤ 2 ⋅ OPT. Why does 𝑆 have to be a vertex cover?
• Exercise. Is this tight, i.e., 2-APP-VC’s output = 2 ⋅ OPT on some graph?

Recall: 𝑀 ⊆ 𝐸 is a matching in 𝐺 = (𝑉, 𝐸) if each node appears in at 
most one edge in 𝑀.
Observation: For any matching 𝑀 and any vertex cover 𝑆, 𝑀 ≤
|𝑆|. In particular, 𝑀 ≤ OPT (size of min vertex cover). 



Integer linear programming (ILP)
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For each 𝑖 ∈ 𝑉, introduce 𝑥H ∈ {0,1}
Min  ∑HLMN 𝑥H
Subject to:

𝑥H + 𝑥P ≥ 1 for each 𝑖, 𝑗 ∈ 𝐸

§ Formulating vertex cover as an integral linear program

Input. Graph 𝐺 = (𝑉, 𝐸)
• Vertex cover 𝑆 ⊆ 𝑉: subset of vertices that touches all edges

Goal. Find a vertex cover 𝑆 of minimum size

[i.e., Pick 𝑖 in vertex cover iff. 𝑥H = 1]

L We don’t know (expect) a poly-time algorithm (ILP)
• Without integrality (LP), we do know poly-time algorithms



Putting aside the integral constraint

5

§ (Threshold) Rounding: 

(ILP Π) Min ∑HLMN 𝑥H
Subject to:

𝑥H + 𝑥P ≥ 1, ∀ 𝑖, 𝑗 ∈ 𝐸
𝑥H ∈ {0,1}, ∀𝑖 ∈ 𝑉

(LP Σ) Min ∑HLMN 𝑥H
Subject to:

𝑥H + 𝑥P ≥ 1, ∀ 𝑖, 𝑗 ∈ 𝐸
0 ≤ 𝑥H ≤ 1, ∀𝑖 ∈ 𝑉

Let 𝑥∗ be an optimal soln. for LP Σ
& optimal value OPT = ∑H 𝑥H∗

?
𝑥H ≔ ⌊𝑥H∗⌉ = _ 1, if 𝑥H∗ ≥

1
2

0, otherwise

i. {𝑥H} is a feasible integral solution: ∀ 𝑖, 𝑗 ∈ 𝐸, 𝑥H∗ ≥
M
a or 𝑥P∗ ≥

M
a or both

ii. ∑H 𝑥H ≤ ∑H 2 ⋅ 𝑥H∗ = 2 ⋅ OPT ≤ 2 ⋅ OPTbcd [optimal value of ILP Π, 
i.e. size of min vertex cover] 



LP relaxation
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Optimization 
Problem

ILP

Fractional 
relaxation

LP

Relax
𝑥∗

Solve in 
poly-time e𝑥

integer

Round

Dual feasible Primal 
Min

Dual 
Max Primal feasibleLP

Integral feasible
Integral Primal 

Min
Integral Dual 

Max Integral feasibleILP

Integrality gap 
(the smaller the better)

1. Valid? 2. Good?



Approximating set cover
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Input. Set 𝑈 of 𝑛 elements, 𝑆M, … , 𝑆h of subsets of 𝑈
Goal. Find 𝐼 ⊆ {1, … ,𝑚} of minimum size such that ⋃H∈l 𝑆H = 𝑈

(ILP Π for Set cover) 

For each 𝑖 ∈ {1,… ,𝑚}, introduce 𝑥H ∈ {0,1}
Min ∑HLMh 𝑥H
Subject to:

m
H:o∈pq

𝑥H ≥ 1, ∀𝑢 ∈ 𝑈



LP relaxation for set cover
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(Set cover ILP Π) 
Min ∑HLMh 𝑥H
Subject to:

m
H:o∈pq

𝑥H ≥ 1, ∀𝑢 ∈ 𝑈

𝑥H ∈ 0,1 , ∀𝑖 ∈ {1,… ,𝑚}

(Set cover Σ) 
Min ∑HLMh 𝑥H
Subject to:

m
H:o∈pq

𝑥H ≥ 1, ∀𝑢 ∈ 𝑈

0 ≤ 𝑥H ≤ 1, ∀𝑖 ∈ {1,… ,𝑚}

Let 𝑥∗ be an optimal soln. for LP Σ
& optimal value OPT = ∑H 𝑥H∗? 𝑥H ≔ ⌊𝑥H∗⌉

§ Threshold rounding: does it cover all elements?
• Ex. 𝑢 ∈ 𝑆M,… , 𝑆Mss; 𝑥M∗, … 𝑥Mss∗ = M

Mss
⇒ 𝑥M = ⋯ = 𝑥Mss = 0. 𝑢 is missed!

§ Randomized rounding! [Stay tuned] 



Hardness of approximation

Theorem. It is NP-Hard to approximate Vertex Cover to with any 
factor below 1.36067. 
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[i.e., otherwise, you can solve 3-SAT in poly-time] 

OPT 
(Min Vertex cover)

2 ⋅ OPT

J LP relax / matching

Theorem’. It is NP-Hard to approximate Vertex Cover to with any 
factor below 2, assuming the unique games conjecture (UGC). 

Want to read more?
https://cs.nyu.edu/~khot/papers/UGCSurvey.pdf

https://cs.stanford.edu/people/trevisan/pubs/inapprox.pdf

1.36 ⋅ OPT
L NP-hard

L NP-hard
(under UGC)

https://cs.nyu.edu/~khot/papers/UGCSurvey.pdf
https://cs.stanford.edu/people/trevisan/pubs/inapprox.pdf

