
Fall’19 CSCE 629

Analysis of
Algorithms

F, 11/15/19

Lecture 30

• Hamiltonian Cycle
• Approximating vertex cover

Fang Song
Texas A&M U

Quiz

Suppose P ≠ NP. Which of the following are still possible?
a) 𝑂(𝑛$) algorithm for factoring 𝑛-bit integers.
b) 𝑂(1.657+) time algorithm for HAM−CYCLE.
c) 𝑂(𝑛456 456 456 +) algorithm for 3−SAT.
d) There exist problems that are neither in 𝐏 nor 𝐍𝐏-Complete.

1

https://en.wikipedia.org/wiki/NP-intermediate

https://en.wikipedia.org/wiki/NP-intermediate

Recall: 𝟑−𝐒𝐀𝐓 is NP-Complete

2

Theorem. 𝟑−𝐒𝐀𝐓 is NP-Complete
Pf. We show Circuit−SAT ≤L 3−SAT
• Given a circuit 𝐾, create a 3−SAT variable 𝑥O for each gate
• Make circuit compute correct values at each node

• Hard-coded input values and output value

∧

∨ ¬

0 ? ?

𝑥U

𝑥V 𝑥W

𝑥$𝑥X𝑥Y
𝑥W = ¬𝑥$
𝑥V = 𝑥X ∨ 𝑥Y
𝑥U = 𝑥V ∧ 𝑥W ⇒ 𝑥U ∨ 𝑥V, 𝑥U ∨ 𝑥W, 𝑥U ∨ 𝑥V ∨ 𝑥W

⇒ 𝑥V ∨ 𝑥X, 𝑥V ∨ 𝑥Y, 𝑥V ∨ 𝑥X ∨ 𝑥Y
⇒ 𝑥W ∨ 𝑥$, 𝑥W ∨ 𝑥$

𝑥Y = 0 ⇒ 𝑥Y 𝑥U = 1 ⇒ 𝑥U
• Final step: turn clauses into exactly 3 literals by adding dummy variables

EX. 𝑥V ∨ 𝑥W ⇒ 𝑥V ∨ 𝑥W ∨ 𝑦, 𝑥V ∨ 𝑥W ∨ 𝑦

Circuit 𝐾 satisfiable iff.
∃ truth assignment
satisfying all clauses
constructed

! Don’t forget to show 𝟑−𝐒𝐀𝐓 ∈ 𝐍𝐏

𝐶V 𝐶a

(DIR−)HAM−CYCLE is NP-Complete

(DIR−)HAM−CYCLE. Given a directed graph 𝐺 = (𝑉, 𝐸), does there
exist a directed cycle Γ that visits every node exactly once?

3

Theorem. 3−SAT ≤L (DIR−)HAM−CYCLE
Pf. Given 3−SAT instance Φ in CNF: 𝑛 variables 𝑥O and 𝑘 clauses 𝐶a

𝑥O

……

𝐶a contains 𝑥O 𝐶a

𝐶a

𝐶a contains 𝑥O
𝐶a

Intuition: traverse row 𝑖 from left to right ⇔ set variable 𝑥O = true

3−SAT ≤L (DIR−)HAM−CYCLE

4

𝑠𝑥V

𝑥W

𝐶V = 𝑥V ∨ 𝑥W ∨ 𝑥$

𝑡

𝑥$

𝐶W = 𝑥V ∨ 𝑥W ∨ 𝑥$

Claim. Φ is satisfiable iff. 𝐺 has a Hamiltonian cycle

3−SAT ≤L (DIR−)HAM−CYCLE

5

Claim. Φ is satisfiable iff. 𝐺 has a Hamiltonian cycle

(⇒) Suppose Φ has a satisfying assign. 𝒙∗. Define an H-Cycle in 𝐺:
• if 𝑥O∗ = true, traverse row 𝑥O from left to right
• if 𝑥O∗ = false, traverse row 𝑥O from right to left
• For each clause 𝐶a pick (only) one row 𝑖 and take a detour

(⇐) Suppose 𝐺 has a H-Cycle Γ. Define a satisfying assign. in Φ:
• In Γ, replace edges going/leaving 𝐶a with the edge of the corresponding two nodes

in some row. This gives a new cycle Γ′ in 𝐺 − {𝐶V, 𝐶W, … , 𝐶x}
• In Γ′, set 𝑥O = true if Γ′ traverses row 𝑖 left-to-right; set 𝑥O = false otherwise.

𝐶a

╳

𝐶a╳
╳

More hard computational problems

• Aerospace engineering: optimal mesh partitioning for finite elements.
• Chemical engineering: heat exchanger network synthesis
• Civil engineering: equilibrium of urban traffic flow [very much needed in BCS!]
• Electrical engineering: VLSI layout.
• Mechanical engineering: structure of turbulence in sheared flows
• Biology: protein folding
• Physics: partition function of 3-D Ising model in statistical mechanics.
• Economics: computation of arbitrage in financial markets with friction
• Financial engineering: find minimum risk portfolio of given return
• Politics: Shapley-Shubik voting power
• Pop culture: Sudoku (http://www-imai.is.s.u-tokyo.ac.jp/~yato/data2/SIGAL87-2.pdf)

6

http://www-imai.is.s.u-tokyo.ac.jp/~yato/data2/SIGAL87-2.pdf

7

Want to learn more?

Computers and Intractability: A Guide
to the Theory of NP-Completeness.
Michael Garey and David S. Johnson

Computational
Complexity: A
Modern Approach
Sanjeev
Arora & Boaz Barak

Complexity Zoo
There are now 544
classes and counting!

Spring’20 @TAMU
• CSCE 627 Theory of Computability
• CSCE 637 Complexity Theory

𝐍𝐏

𝐏

𝐍𝐏𝐂

𝐏𝐒𝐏𝐀𝐂𝐄

𝐄𝐗𝐏

https://en.wikipedia.org/wiki/Michael_Garey
https://en.wikipedia.org/wiki/David_S._Johnson
http://www.cs.princeton.edu/~arora/
http://www.boazbarak.org/
https://complexityzoo.uwaterloo.ca/Complexity_Zoo

8

Coping with NP-Completeness

https://i.stack.imgur.com/EkpIV.jpg

§Better (constructive) answers:
sacrifice one of three desired features

1. Solve arbitrary instances
2. Solve problems in poly-time
3. Solve problems to optimality

§ Techniques
• Identifying structured special cases
• Local search heuristics (e.g., gradient descent)
• Approximation algorithms

Finding near-optimal vertex cover

Input. Graph 𝐺 = (𝑉, 𝐸) and an integer 𝑘
• Vertex cover 𝑆 ⊆ 𝑉: subset of vertices that touches all edges

Goal. Find a vertex cover 𝑆 of minimum size

9

§ First attempt: greedily pick the vertex that covers most edges
APP-VC: on input 𝐺 = 𝑉, 𝐸
For 𝑣 ∈ 𝑉 (in descending order of degrees)

Add 𝑣 in	S	
Delete 𝑣 and its neighbors from 𝐺

§Claim. Suppose the minimum vertex cover has size OPT. Then the
output of APP-VC has size at most O(log 𝑛 ⋅ OPT)

§ Pf. Exercise (Hint on board)

2-approximation vertex cover

10

§ 2nd attempt: find a MAX matching
2-APP-VC: on input 𝐺 = 𝑉, 𝐸
Find a maximal matching 𝑀 ⊆ 𝐸
Return 𝑆 = {all end points of edges in 𝑀}

§Claim. The output of 2-APP-VC has size at most 2 ⋅ OPT
§ Pf. 𝑆 = 2 𝑀 ≤ 2 ⋅ OPT. Why does 𝑆 have to be a vertex cover?
• Exercise. Is this tight, i.e., 2-APP-VC’s output = 2 ⋅ OPT on some graph?

Recall: 𝑀 ⊆ 𝐸 is a matching in 𝐺 = (𝑉, 𝐸) if each node appears in at
most one edge in 𝑀.
Observation: For any matching 𝑀 and any vertex cover 𝑆, 𝑀 ≤
|𝑆|. In particular, 𝑀 ≤ OPT (size of min vertex cover).

